cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A326294 Number of connected simple graphs on a subset of {1..n} with no crossing or nesting edges.

Original entry on oeis.org

1, 1, 2, 8, 35, 147, 600, 2418
Offset: 0

Views

Author

Gus Wiseman, Jun 29 2019

Keywords

Comments

Two edges {a,b}, {c,d} are crossing if a < c < b < d or c < a < d < b, and nesting if a < c < d < b or c < a < b < d.

Examples

			The a(4) = 35 edge-sets:
  {}  {12}  {12,13}  {12,13,14}  {12,13,14,34}
      {13}  {12,14}  {12,13,23}  {12,13,23,34}
      {14}  {12,23}  {12,13,34}  {12,14,24,34}
      {23}  {12,24}  {12,14,24}  {12,23,24,34}
      {24}  {13,14}  {12,14,34}
      {34}  {13,23}  {12,23,24}
            {13,34}  {12,23,34}
            {14,24}  {12,24,34}
            {14,34}  {13,14,34}
            {23,24}  {13,23,34}
            {23,34}  {14,24,34}
            {24,34}  {23,24,34}
		

Crossrefs

The inverse binomial transform is the covering case A326339.
Covering graphs with no crossing or nesting edges are A326329.
Connected simple graphs are A001349.
Graphs without crossing or nesting edges are A326244.

Programs

  • Mathematica
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]],Length[csm[#]]<=1&&!MatchQ[#,{_,{x_,y_},_,{z_,t_},_}/;x
    				

Formula

Conjecture: a(n) = A052161(n - 2) + 1.

A326341 Number of minimal topologically connected chord graphs covering {1..n}.

Original entry on oeis.org

1, 0, 1, 0, 1, 5, 22, 119
Offset: 0

Views

Author

Gus Wiseman, Jun 29 2019

Keywords

Comments

Covering means there are no isolated vertices. Two edges {a,b}, {c,d} are crossing if a < c < b < d or c < a < d < b. A graph is topologically connected if the graph whose vertices are the edges and whose edges are crossing pairs of edges is connected.

Examples

			The a(4) = 1 through a(6) = 22 edge-sets:
  {13,24}  {13,14,25}  {13,25,46}
           {13,24,25}  {14,25,36}
           {13,24,35}  {14,26,35}
           {14,24,35}  {15,24,36}
           {14,25,35}  {13,14,15,26}
                       {13,14,25,26}
                       {13,15,24,26}
                       {13,15,26,46}
                       {13,24,25,26}
                       {13,24,25,36}
                       {13,24,26,35}
                       {13,24,35,36}
                       {13,24,35,46}
                       {14,15,26,36}
                       {14,24,35,36}
                       {14,24,35,46}
                       {14,25,35,46}
                       {15,24,35,46}
                       {15,25,35,46}
                       {15,25,36,46}
                       {15,26,35,46}
                       {15,26,36,46}
		

Crossrefs

The non-minimal case is A324327.
Minimal covers are A053530.
Topologically connected graphs are A324327 (covering) or A324328 (all).

Programs

  • Mathematica
    croXQ[stn_]:=MatchQ[stn,{_,{_,x_,_,y_,_},_,{_,z_,_,t_,_},_}/;x0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    crosscmpts[stn_]:=csm[Union[Subsets[stn,{1}],Select[Subsets[stn,{2}],croXQ]]];
    Table[Length[fasmin[Select[Subsets[Subsets[Range[n],{2}]],And[Union@@#==Range[n],Length[crosscmpts[#]]<=1]&]]],{n,0,5}]

A326349 Number of non-nesting, topologically connected simple graphs covering {1..n}.

Original entry on oeis.org

1, 0, 1, 0, 1, 11, 95, 797
Offset: 0

Views

Author

Gus Wiseman, Jun 30 2019

Keywords

Comments

Covering means there are no isolated vertices. Two edges {a,b}, {c,d} are crossing if a < c < b < d or c < a < d < b, and nesting if a < c < d < b or c < a < b < d. A graph with positive integer vertices is topologically connected if the graph whose vertices are the edges and whose edges are crossing pairs of edges is connected.

Examples

			The a(5) = 11 edge-sets:
  {13,14,25}
  {13,24,25}
  {13,24,35}
  {14,24,35}
  {14,25,35}
  {13,14,24,25}
  {13,14,24,35}
  {13,14,25,35}
  {13,24,25,35}
  {14,24,25,35}
  {13,14,24,25,35}
		

Crossrefs

The binomial transform is the non-covering case A326293.
Topologically connected, covering simple graphs are A324327.
Non-crossing, covering simple graphs are A324169.

Programs

  • Mathematica
    croXQ[eds_]:=MatchQ[eds,{_,{x_,y_},_,{z_,t_},_}/;x_,{x_,y_},_,{z_,t_},_}/;x0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]],Union@@#==Range[n]&&!nesXQ[#]&&Length[csm[Union[Subsets[#,{1}],Select[Subsets[#,{2}],croXQ]]]]<=1&]],{n,0,5}]

A326350 Number of non-nesting connected simple graphs with vertices {1..n}.

Original entry on oeis.org

1, 0, 1, 4, 23, 157, 1182
Offset: 0

Views

Author

Gus Wiseman, Jun 30 2019

Keywords

Comments

Two edges {a,b}, {c,d} are nesting if a < c < d < b or c < a < b < d.

Crossrefs

The inverse binomial transform is the non-covering case A326351.
Connected simple graphs are A001349.
Connected simple graphs with no crossing or nesting edges are A326294.
Simple graphs without crossing or nesting edges are A326244.

Programs

  • Mathematica
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]],Union@@#==Range[n]&&Length[csm[#]]<=1&&!MatchQ[#,{_,{x_,y_},_,{z_,t_},_}/;x
    				

A326351 Number of non-nesting connected simple graphs on a subset of {1..n}.

Original entry on oeis.org

1, 1, 2, 8, 46, 323, 2565
Offset: 0

Views

Author

Gus Wiseman, Jun 30 2019

Keywords

Comments

Two edges {a,b}, {c,d} are nesting if a < c < d < b or c < a < b < d.

Crossrefs

The binomial transform is the covering case A326350.
Connected simple graphs are A001349.
Connected simple graphs with no crossing or nesting edges are A326294.
Simple graphs without crossing or nesting edges are A326244.

Programs

  • Mathematica
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]],Length[csm[#]]<=1&&!MatchQ[#,{_,{x_,y_},_,{z_,t_},_}/;x
    				
Previous Showing 11-15 of 15 results.