A326673 The positions of ones in the reversed binary expansion of n have integer geometric mean.
1, 2, 4, 8, 9, 11, 16, 32, 64, 128, 130, 138, 256, 257, 261, 264, 296, 388, 420, 512, 1024, 2048, 2052, 2084, 2306, 2316, 2338, 2348, 4096, 8192, 16384, 32768, 32769, 32776, 32777, 32899, 32904, 32907, 33024, 35072, 65536, 131072, 131074, 131084, 131106
Offset: 1
Examples
The reversed binary expansion of 11 is (1,1,0,1) and {1,2,4} has integer geometric mean, so 11 is in the sequence.
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..211
- Wikipedia, Geometric mean
Crossrefs
Partitions with integer geometric mean are A067539.
Subsets with integer geometric mean are A326027.
Factorizations with integer geometric mean are A326028.
Numbers whose binary digit positions have integer mean are A326669.
Numbers whose binary digit positions are relatively prime are A326674.
Numbers whose binary digit positions have integer geometric mean are A326672.
Programs
-
Mathematica
Select[Range[1000],IntegerQ[GeometricMean[Join@@Position[Reverse[IntegerDigits[#,2]],1]]]&]
-
PARI
ok(n)={ispower(prod(i=0, logint(n,2), if(bittest(n,i), i+1, 1)), hammingweight(n))} { for(n=1, 10^7, if(ok(n), print1(n, ", "))) } \\ Andrew Howroyd, Sep 29 2019
Comments