cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A326692 Values of k for which the denominator of (Sum_{prime p | k} 1/p - 1/k) is k.

Original entry on oeis.org

1, 4, 8, 9, 15, 16, 20, 24, 25, 27, 28, 32, 33, 35, 36, 40, 44, 45, 49, 51, 52, 60, 63, 64, 65, 68, 69, 72, 76, 77, 81, 85, 87, 88, 91, 92, 95, 96, 99, 100, 104, 108, 112, 115, 116, 117, 119, 121, 123, 124, 125, 128, 133, 135, 136, 140, 141, 143, 144, 145, 148
Offset: 1

Views

Author

Jonathan Sondow, Jul 20 2019

Keywords

Comments

Any prime power p^k with k > 1 is a term, as 1/p - 1/p^k = (p^(k-1) - 1)/p^k which is in reduced form and has denominator p^k.
Are there infinitely many Carmichael numbers A002997 in the sequence?

Examples

			1/3 + 1/5 - 1/15 = 7/15 has denominator 15, so 15 is a term.
		

Crossrefs

Programs

  • Mathematica
    PrimeFactors[n_] := Select[Divisors[n], PrimeQ];
    f[n_] := Denominator[Sum[1/p, {p, PrimeFactors[n]}] - 1/n];
    Select[Range[148], f[#] == # &]
  • PARI
    is(k) = {my(p = factor(k)[,1]); denominator(sum(i = 1, #p, 1/p[i]) - 1/k) == k;} \\ Amiram Eldar, Apr 26 2024

Formula

Solutions of A326690(x) = x. That is, fixed points of A326690.

A309268 Carmichael numbers m such that A309132(m) < m.

Original entry on oeis.org

561, 1105, 46657, 52633, 188461, 670033, 825265, 838201, 1082809, 2455921, 2628073, 4463641, 4767841, 5632705, 8830801, 11119105, 13187665, 16778881, 18307381, 18900973, 21584305, 22665505, 31146661, 31405501, 31692805, 34657141, 36765901, 38624041, 40280065
Offset: 1

Views

Author

Amiram Eldar and Thomas Ordowski, Jul 20 2019

Keywords

Comments

A309132(m) divides m for all Carmichael numbers m, but apparently most of them equal A309132(m). Of the first 10000 Carmichael numbers, only 1341 are in this sequence.
The ratios a(n)/A309132(a(n)) are 3, 5, 13, 7, 133, 7, 133, 7, 7, 793, 7, 13, 13, ...
By Jonathan Sondow's theorem (cf. comments in A309132), these are Carmichael numbers m such that denominator(Sum_{prime p|m}1/p - 1/m) < m, i.e., A326690(m) < m.
Problem: are there Carmichael numbers m such that A309132(m) is prime? Equivalently, Carmichael numbers m such that A326690(m) is prime. None exist below 2^64. Conjecture: there are no such Carmichael numbers.

Crossrefs

Subsequence of A002997 and A309235.

Programs

  • Mathematica
    aQ[n_] := CompositeQ[n] && Divisible[n - 1, CarmichaelLambda[n]] && Denominator[ Total@(1/FactorInteger[n][[;; , 1]]) - 1/n] < n; Select[Range[10^6], aQ]

A309378 a(n) is the smallest squarefree number m with n prime factors such that Sum_{prime q|m} 1/q - 1/m = P/Q, where P <> Q are primes, for n > 1, or a(n) = 1 if no such m.

Original entry on oeis.org

1, 6, 105, 1330, 331230, 4081530, 127357230
Offset: 1

Views

Author

Amiram Eldar and Thomas Ordowski, Jul 26 2019

Keywords

Comments

Associated fractions P/Q for n > 1 are 2/3, 2/3, 17/19, 191/181, 19/17, 5701/4241, .... Note that Q | m.
a(n) is the least m with Omega(m) = omega(m) = n such that A326689(m) is a prime P and A326690(m) is a prime Q, or a(n) = 1 if no such m.

Examples

			1/2 + 1/3 - 1/6 = 2/3,
1/3 + 1/5 + 1/7 - 1/105 = 2/3,
1/2 + 1/5 + 1/7 + 1/19 - 1/1330 = 17/19,
....
6 = 2*3, 105 = 3*5*7, 1330 = 2*5*7*19, 331230 = 2*3*5*61*181, 127357230 = 2*3*5*17*53*151, ... - _Jonathan Sondow_, Jul 27 2019
		

Crossrefs

Programs

  • Mathematica
    m=2; s={}; Do[f = FactorInteger[n]; p = f[[;; , 1]]; e = f[[;; , 2]]; If[Max[e] > 1 || Length[e] < m, Continue[]]; frac = Total@(1/p) - 1/n; num = Numerator[frac]; den = Denominator[frac]; If[den != num && PrimeQ[num] && PrimeQ[den], AppendTo[s, n]; m++], {n, 1, 5*10^6}]; s
  • PARI
    a(n) = {for(i = 2, oo, if(is(i, n), return(i)))}
    is(m, qp) = {my(f = factor(m)); if(#f~ != qp, return(0)); if(Set(f[,2]) != Set([1]), return(0)); s = sum(i = 1, qp, 1/f[i, 1]) - 1/m; isprime(denominator(s)) && isprime(numerator(s))} \\ David A. Corneth, Jul 27 2019

A327033 N(p-1)/p + D(p-1)/p^2 with p the n-th prime and B(k) = N(k)/D(k) the k-th Bernoulli number.

Original entry on oeis.org

0, 1, 1, 1, 1, -37, -211, 2311, 37153, -818946931, 277930363757, -711223555487930419, -6367871182840222481, 35351107998094669831, 12690449182849194963361, -15116334304443206742413679091, 1431925649981017658678758915153153, -19921854762028779869513196624259348280501
Offset: 1

Views

Author

Jonathan Sondow, Aug 15 2019

Keywords

Comments

a(n) is an integer, as conjectured by Thomas Ordowski and proved by the author in A309132 and A326690.
Ordowski also conjectured that the sequence is a subsequence of A174341.

Examples

			Prime(6) = 13 and B(12) = -691/2730, so a(6) = -691/13 + 2730/13^2 = -37.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := With[{p = Prime[n]}, With[{b = BernoulliB[p - 1]}, (p  Numerator[b] + Denominator[b])/p^2]];
    Table[a[n], {n, 1, 18}]
  • PARI
    a(n) = my(p = prime(n), b = bernfrac(p-1)); numerator(b)/p + denominator(b)/p^2; \\ Michel Marcus, Aug 16 2019
Previous Showing 11-14 of 14 results.