cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A328859 Indices k of records of low value in the ratios A319696(k)/A000005(k) between the number of distinct values of the Euler totient function applied to the divisors of k and the number of divisors of k.

Original entry on oeis.org

1, 2, 60, 120, 240, 480, 960, 1920, 3840, 4080, 8160, 16320, 32640, 65280, 130560, 261120, 522240, 1044480, 1485120, 2227680, 2970240, 4455360, 8910720, 17821440, 35642880, 42325920, 63488880, 69090840, 84651840, 126977760, 169303680, 253955520, 507911040, 761866560
Offset: 1

Views

Author

Amiram Eldar, Oct 28 2019

Keywords

Comments

The maximal possible value of the ratio A319696(k)/A000005(k) is 1 which occurs at the terms of A326835.
The rounded values of the corresponding ratios are 1, 0.5, 0.417, 0.375, 0.35, 0.333, 0.321, 0.313, 0.306, 0.275, 0.25, 0.232, 0.219, 0.208, 0.2, 0.193, 0.188, 0.183, 0.179, 0.170, 0.168, 0.158, 0.148, 0.141, 0.135, 0.132, 0.130, 0.129, 0.122, 0.117, 0.115, 0.108, 0.102, 0.101, ...

Crossrefs

Programs

  • Mathematica
    r[n_] := Length @ Union[EulerPhi /@ (d = Divisors[n])]/Length[d]; rm = 2; s = {}; Do[r1 = r[n]; If[r1 < rm, rm = r1; AppendTo[s, n]], {n, 1, 10^5}]; s

A348215 a(n) is the sum of the iterated A348158 starting from n until a fixed point is reached.

Original entry on oeis.org

0, 1, 0, 3, 0, 3, 0, 7, 0, 5, 0, 7, 0, 7, 0, 15, 0, 9, 0, 15, 0, 11, 0, 15, 0, 13, 0, 21, 0, 15, 0, 31, 0, 17, 0, 25, 0, 19, 0, 31, 0, 21, 0, 33, 0, 23, 0, 31, 0, 25, 0, 39, 0, 27, 0, 49, 0, 29, 0, 31, 0, 31, 57, 120, 0, 33, 0, 51, 0, 35, 0, 57, 0, 37, 0, 57
Offset: 1

Views

Author

Amiram Eldar, Oct 07 2021

Keywords

Comments

The first odd number k with a(k) > 0 is k = 63.

Examples

			a(4) = 3 since the iterations of the map x -> A348158(x) starting from 4 are 4 -> 3.
a(64) = 120 since the iterations of the map x -> A348158(x) starting from 64 are 64 -> 63 -> 57, and 63 + 57 = 120.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Plus @@ DeleteDuplicates @ Map[EulerPhi, Divisors[n]]; a[n_] := Plus @@ Most @ FixedPointList[f, n] - n; Array[a, 100]

Formula

a(n) = 0 if and only if n is in A326835.
a(2*n) > 0 for all n.

A361924 Numbers whose infinitary divisors have distinct values of the infinitary totient function iphi (A091732).

Original entry on oeis.org

1, 3, 4, 5, 7, 9, 11, 12, 13, 15, 16, 17, 19, 20, 21, 23, 25, 27, 28, 29, 31, 33, 35, 36, 37, 39, 41, 43, 44, 45, 47, 48, 49, 51, 52, 53, 55, 57, 59, 60, 61, 63, 64, 65, 67, 68, 69, 71, 73, 75, 76, 77, 79, 80, 81, 83, 85, 87, 89, 91, 92, 93, 95, 97, 99, 100, 101
Offset: 1

Views

Author

Amiram Eldar, Mar 30 2023

Keywords

Comments

First differs from A003159 at n = 57.
Numbers k such that A361923(k) = A037445(k).
Since Sum_{d infinitary divisor of k} iphi(d) = k, these are numbers k such that the multiset {iphi(d) | d infinitary divisor of k} is a partition of k into distinct parts.
Includes all the odd prime powers (A061345) and all the powers of 4 (A000302).
The numbers of terms not exceeding 10^k, for k = 1, 2, ..., are 6, 66, 651, 6497, 64894, 648641, 6485605, 64851632, 648506213, 6485025363, ... . Apparently, this sequence has an asymptotic density 0.6485...

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := p^(2^(-1 + Position[Reverse@ IntegerDigits[e, 2], 1]));
    iphi[1] = 1; iphi[n_] := Times @@ (Flatten@ (f @@@ FactorInteger[n]) - 1);
    idivs[n_] := Sort@ Flatten@ Outer[Times, Sequence @@ (FactorInteger[n] /. {p_, m_Integer} :> p^Select[Range[0, m], BitOr[m, #] == m &])]; idivs[1] = {1};
    q[n_] := Length @ Union[iphi /@ (d = idivs[n])] == Length[d]; Select[Range[100], q]
  • PARI
    iphi(n) = {my(f=factor(n), b); prod(i=1, #f~, b = binary(f[i, 2]); prod(k=1, #b, if(b[k], f[i, 1]^(2^(#b-k)) - 1, 1)))}
    isidiv(d, f) = {if (d==1, return (1)); for (k=1, #f~, bne = binary(f[k, 2]); bde = binary(valuation(d, f[k, 1])); if (#bde < #bne, bde = concat(vector(#bne-#bde), bde)); for (j=1, #bne, if (! bne[j] && bde[j], return (0)); ); ); return (1); }
    idivs(n) = {my(d = divisors(n), f = factor(n), idiv = []); for (k=1, #d, if(isidiv(d[k], f), idiv = concat(idiv, d[k])); ); idiv; } \\ Michel Marcus at A077609
    is(k) = {my(d = idivs(k)); #Set(apply(x->iphi(x), d)) == #d;}

A373531 a(n) is the maximum number of divisors of n with an equal value of the Euler totient function (A000010).

Original entry on oeis.org

1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 1, 3, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 1, 3, 1, 2, 1
Offset: 1

Views

Author

Amiram Eldar, Jun 08 2024

Keywords

Comments

The sums of the first 10^k terms, for k = 1, 2, ..., are 15, 161, 1641, 16554, 166029, 1662306, 16630535, 166335597, 1663473941, 16635216306, ... . Apparently, this sequence has an asymptotic mean 1.663... .

Examples

			a(2) = 2 since 2 has 2 divisors, 1 and 2, and phi(1) = phi(2) = 1.
a(12) = 3 since 3 of the divisors of 12 (3, 4 and 6) have the same value of phi: phi(3) = phi(4) = phi(6) = 2.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Max[Tally[EulerPhi[Divisors[n]]][[;; , 2]]]; Array[a, 100]
  • PARI
    a(n) = vecmax(matreduce(apply(x->eulerphi(x), divisors(n)))[ , 2]);
    
  • Python
    from collections import Counter
    from sympy import divisors, totient
    def a(n):
        c = Counter(totient(d) for d in divisors(n, generator=True))
        return c.most_common(1)[0][1]
    print([a(n) for n in range(1, 88)]) # Michael S. Branicky, Jun 08 2024

Formula

a(A326835(n)) = 1.
a(A359563(n)) >= 2.
a(A359565(n)) >= 3.
a(2*n) >= 2.
a(p) = 2 for an odd prime p.
a(m*n) >= a(n) for all m > 1.

A348159 Indices k of records of low value in the ratios A348158(k)/k.

Original entry on oeis.org

1, 2, 126, 1638, 2394, 8190, 139230, 155610, 2645370, 5757570, 97878690, 420302610, 1963331370, 7145144370
Offset: 1

Views

Author

Amiram Eldar, Oct 03 2021

Keywords

Comments

The maximal possible value of the ratio A348158(k)/k is 1 which occurs at the terms of A326835.
The rounded values of the corresponding records are 1, 0.5, 0.452, 0.445, 0.437, 0.424, 0.420, 0.409, 0.404, 0.398, 0.3933, 0.3927, 0.3885, 0.3879, ...
a(15) <= 33376633290. - David A. Corneth, Oct 04 2021

Crossrefs

Programs

  • Mathematica
    r[n_] := Plus @@ DeleteDuplicates @ Map[EulerPhi, Divisors[n]]/n; rm = 2; s = {}; Do[If[(r1 = r[n]) < rm, rm = r1; AppendTo[s, n]], {n, 1, 2*10^5}]; s
  • PARI
    f(n) = vecsum(Set(apply(eulerphi, divisors(n)))); \\ A348158
    lista(nn) = {my(r=oo, x); for (i=1, nn, if ((x=f(i)/i) < r, print1(i, ", "); r = x););} \\ Michel Marcus, Oct 04 2021
Previous Showing 11-15 of 15 results.