A326877
Number of connectedness systems covering n vertices without singletons.
Original entry on oeis.org
1, 0, 1, 8, 381, 252080, 18687541309
Offset: 0
The a(3) = 8 covering connectedness systems without singletons:
{{1,2,3}}
{{1,2},{1,2,3}}
{{1,3},{1,2,3}}
{{2,3},{1,2,3}}
{{1,2},{1,3},{1,2,3}}
{{1,2},{2,3},{1,2,3}}
{{1,3},{2,3},{1,2,3}}
{{1,2},{1,3},{2,3},{1,2,3}}
Inverse binomial transform of
A072446 (the non-covering case).
Exponential transform of
A072447 if we assume
A072447(1) = 0 (the connected case).
The case with singletons is
A326870.
The BII-numbers of these set-systems are
A326873.
-
Table[Length[Select[Subsets[Subsets[Range[n],{2,n}]],Union@@#==Range[n]&&SubsetQ[#,Union@@@Select[Tuples[#,2],Intersection@@#!={}&]]&]],{n,0,4}]
A326879
BII-numbers of connected connectedness systems.
Original entry on oeis.org
0, 1, 2, 4, 5, 6, 7, 8, 16, 17, 24, 25, 32, 34, 40, 42, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112
Offset: 1
The sequence of all connected connectedness systems together with their BII-numbers begins:
0: {}
1: {{1}}
2: {{2}}
4: {{1,2}}
5: {{1},{1,2}}
6: {{2},{1,2}}
7: {{1},{2},{1,2}}
8: {{3}}
16: {{1,3}}
17: {{1},{1,3}}
24: {{3},{1,3}}
25: {{1},{3},{1,3}}
32: {{2,3}}
34: {{2},{2,3}}
40: {{3},{2,3}}
42: {{2},{3},{2,3}}
64: {{1,2,3}}
65: {{1},{1,2,3}}
66: {{2},{1,2,3}}
67: {{1},{2},{1,2,3}}
68: {{1,2},{1,2,3}}
Connected connectedness systems are counted by
A326868, with unlabeled version
A326869.
Connected connectedness systems without singletons are counted by
A072447.
The not necessarily connected case is
A326872.
Cf.
A029931,
A048793,
A072445,
A072446,
A326031,
A326749,
A326753,
A326866,
A326867,
A326870,
A326876.
-
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
connsysQ[eds_]:=SubsetQ[eds,Union@@@Select[Tuples[eds,2],Intersection@@#!={}&]];
Select[Range[0,100],#==0||MemberQ[bpe/@bpe[#],Union@@bpe/@bpe[#]]&&connsysQ[bpe/@bpe[#]]&]
A326873
BII-numbers of connectedness systems without singletons.
Original entry on oeis.org
0, 4, 16, 32, 64, 68, 80, 84, 96, 100, 112, 116, 256, 288, 512, 528, 1024, 1028, 1280, 1284, 1536, 1540, 1792, 1796, 2048, 2052, 4096, 4112, 4352, 4368, 6144, 6160, 6400, 6416, 8192, 8224, 8704, 8736, 10240, 10272, 10752, 10784, 16384, 16388, 16400, 16416
Offset: 1
The sequence of all connectedness systems without singletons together with their BII-numbers begins:
0: {}
4: {{1,2}}
16: {{1,3}}
32: {{2,3}}
64: {{1,2,3}}
68: {{1,2},{1,2,3}}
80: {{1,3},{1,2,3}}
84: {{1,2},{1,3},{1,2,3}}
96: {{2,3},{1,2,3}}
100: {{1,2},{2,3},{1,2,3}}
112: {{1,3},{2,3},{1,2,3}}
116: {{1,2},{1,3},{2,3},{1,2,3}}
256: {{1,4}}
288: {{2,3},{1,4}}
512: {{2,4}}
528: {{1,3},{2,4}}
1024: {{1,2,4}}
1028: {{1,2},{1,2,4}}
1280: {{1,4},{1,2,4}}
1284: {{1,2},{1,4},{1,2,4}}
Connectedness systems without singletons are counted by
A072446, with unlabeled case
A072444.
Connectedness systems are counted by
A326866, with unlabeled case
A326867.
BII-numbers of connectedness systems are
A326872.
-
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
connnosQ[eds_]:=!MemberQ[Length/@eds,1]&&SubsetQ[eds,Union@@@Select[Tuples[eds,2],Intersection@@#!={}&]];
Select[Range[0,1000],connnosQ[bpe/@bpe[#]]&]
A326898
Number of unlabeled topologies with up to n points.
Original entry on oeis.org
1, 2, 5, 14, 47, 186, 904, 5439, 41418, 404501, 5122188, 84623842, 1828876351, 51701216248, 1908493827243, 91755916071736, 5729050033597431
Offset: 0
Non-isomorphic representatives of the a(0) = 1 through a(3) = 14 topologies:
{} {} {} {}
{}{1} {}{1} {}{1}
{}{12} {}{12}
{}{2}{12} {}{123}
{}{1}{2}{12} {}{2}{12}
{}{3}{123}
{}{23}{123}
{}{1}{2}{12}
{}{1}{23}{123}
{}{3}{23}{123}
{}{2}{3}{23}{123}
{}{3}{13}{23}{123}
{}{2}{3}{13}{23}{123}
{}{1}{2}{3}{12}{13}{23}{123}
A326908
Number of non-isomorphic sets of subsets of {1..n} that are closed under union and intersection.
Original entry on oeis.org
2, 4, 9, 23, 70, 256, 1160, 6599, 48017, 452518, 5574706, 90198548, 1919074899, 53620291147, 1962114118390, 93718030190126, 5822768063787557
Offset: 0
Non-isomorphic representatives of the a(0) = 2 through a(3) = 23 sets of subsets:
{} {} {} {}
{{}} {{}} {{}} {{}}
{{1}} {{1}} {{1}}
{{}{1}} {{12}} {{12}}
{{}{1}} {{}{1}}
{{}{12}} {{123}}
{{2}{12}} {{}{12}}
{{}{2}{12}} {{}{123}}
{{}{1}{2}{12}} {{2}{12}}
{{3}{123}}
{{}{2}{12}}
{{23}{123}}
{{}{3}{123}}
{{}{23}{123}}
{{}{1}{2}{12}}
{{3}{23}{123}}
{{}{1}{23}{123}}
{{}{3}{23}{123}}
{{3}{13}{23}{123}}
{{}{2}{3}{23}{123}}
{{}{3}{13}{23}{123}}
{{}{2}{3}{13}{23}{123}}
{{}{1}{2}{3}{12}{13}{23}{123}}
Taking first differences and prepending 1 gives
A326898.
Taking second differences and prepending two 1's gives
A001930.
Cf.
A000612,
A000798,
A003180,
A108798,
A108800,
A193675,
A326867,
A326876,
A326878,
A326882,
A326883.
-
Table[Length[Select[Subsets[Subsets[Range[n]]],SubsetQ[#,Union@@@Tuples[#,2]]&&SubsetQ[#,Intersection@@@Tuples[#,2]]&]],{n,0,3}]
A326899
Number of unlabeled connectedness systems covering n vertices without singletons.
Original entry on oeis.org
1, 0, 1, 4, 41, 3048, 26894637
Offset: 0
Non-isomorphic representatives of the a(3) = 4 connectedness systems:
{{1,2,3}}
{{2,3},{1,2,3}}
{{1,3},{2,3},{1,2,3}}
{{1,2},{1,3},{2,3},{1,2,3}}
The case with singletons is
A326871.
First differences of
A072444 (the non-covering case).
Euler transform of
A072445 (the connected case).
Comments