cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-24 of 24 results.

A327072 Triangle read by rows where T(n,k) is the number of labeled simple connected graphs with n vertices and exactly k bridges.

Original entry on oeis.org

1, 1, 0, 0, 1, 0, 1, 0, 3, 0, 10, 12, 0, 16, 0, 253, 200, 150, 0, 125, 0, 11968, 7680, 3600, 2160, 0, 1296, 0, 1047613, 506856, 190365, 68600, 36015, 0, 16807, 0, 169181040, 58934848, 16353792, 4695040, 1433600, 688128, 0, 262144, 0, 51017714393, 12205506096, 2397804444, 500828832, 121706550, 33067440, 14880348, 0, 4782969, 0
Offset: 0

Views

Author

Gus Wiseman, Aug 24 2019

Keywords

Comments

A bridge is an edge that, if removed without removing any incident vertices, disconnects the graph. Connected graphs with no bridges are counted by A095983 (2-edge-connected graphs).
Warning: In order to be consistent with A001187, we have treated the n = 0 and n = 1 cases in ways that are not consistent with A095983.

Examples

			Triangle begins:
    1
    1   0
    0   1   0
    1   0   3   0
   10  12   0  16   0
  253 200 150   0 125   0
		

Crossrefs

Column k = 0 is A095983, if we assume A095983(0) = A095983(1) = 1.
Column k = 1 is A327073.
Column k = n - 1 is A000272.
Row sums are A001187.
The unlabeled version is A327077.
Row sums without the first column are A327071.

Programs

  • Mathematica
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    Table[If[n<=1&&k==0,1,Length[Select[Subsets[Subsets[Range[n],{2}]],Union@@#==Range[n]&&Length[csm[#]]==1&&Count[Table[Length[Union@@Delete[#,i]]1,{i,Length[#]}],True]==k&]]],{n,0,4},{k,0,n}]
  • PARI
    \\ p is e.g.f. of A053549.
    T(n)={my(p=x*deriv(log(sum(k=0, n, 2^binomial(k, 2) * x^k / k!) + O(x*x^n))), v=Vec(1+serreverse(serreverse(log(x/serreverse(x*exp(p))))/exp(x*y+O(x^n))))); vector(#v, k, max(0,k-2)!*Vecrev(v[k], k)) }
    { my(A=T(8)); for(n=1, #A, print(A[n])) } \\ Andrew Howroyd, Dec 28 2020

Extensions

Terms a(21) and beyond from Andrew Howroyd, Dec 28 2020

A327366 Triangle read by rows where T(n,k) is the number of labeled simple graphs with n vertices and minimum vertex-degree k.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 4, 3, 1, 0, 23, 31, 9, 1, 0, 256, 515, 227, 25, 1, 0, 5319, 15381, 10210, 1782, 75, 1, 0, 209868, 834491, 815867, 221130, 15564, 231, 1, 0, 15912975, 83016613, 116035801, 47818683, 5499165, 151455, 763, 1, 0, 2343052576, 15330074139, 29550173053, 18044889597, 3291232419, 158416629, 1635703, 2619, 1, 0
Offset: 0

Views

Author

Gus Wiseman, Sep 04 2019

Keywords

Comments

The minimum vertex-degree of the empty graph is infinity. It has been included here under k = 0. - Andrew Howroyd, Mar 09 2020

Examples

			Triangle begins:
     1
     1     0
     1     1     0
     4     3     1     0
    23    31     9     1     0
   256   515   227    25     1     0
  5319 15381 10210  1782    75     1     0
		

Crossrefs

Row sums are A006125.
Row sums without the first column are A006129.
Row sums without the first two columns are A100743.
Column k = 0 is A327367(n > 0).
Column k = 1 is A327227.
The unlabeled version is A294217.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]],k==If[#=={}||Union@@#!=Range[n],0,Min@@Length/@Split[Sort[Join@@#]]]&]],{n,0,5},{k,0,n}]
  • PARI
    GraphsByMaxDegree(n)={
      local(M=Map(Mat([x^0, 1])));
      my(acc(p, v)=my(z); mapput(M, p, if(mapisdefined(M, p, &z), z+v, v)));
      my(merge(r, p, v)=acc(p + sum(i=1, poldegree(p)-r-1, polcoef(p, i)*(1-x^i)), v));
      my(recurse(r, p, i, q, v, e)=if(i<0, merge(r, x^e+q, v), my(t=polcoef(p, i)); for(k=0, t, self()(r, p, i-1, (t-k+x*k)*x^i+q, binomial(t, k)*v, e+k))));
      for(k=2, n, my(src=Mat(M)); M=Map(); for(i=1, matsize(src)[1], my(p=src[i, 1]); recurse(n-k, p, poldegree(p), 0, src[i, 2], 0)));
      Mat(M);
    }
    Row(n)={if(n==0, [1], my(M=GraphsByMaxDegree(n), u=vector(n+1)); for(i=1, matsize(M)[1], u[n-poldegree(M[i,1])]+=M[i,2]); u)}
    { for(n=0, 8, print(Row(n))) } \\ Andrew Howroyd, Mar 09 2020

Extensions

Terms a(28) and beyond from Andrew Howroyd, Sep 09 2019

A327147 Smallest BII-number of a set-system with spanning edge-connectivity n.

Original entry on oeis.org

0, 1, 52, 116, 3952, 8052
Offset: 0

Views

Author

Gus Wiseman, Sep 01 2019

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. We define the set-system with BII-number n to be obtained by taking the binary indices of each binary index of n. Every set-system (finite set of finite nonempty sets) has a different BII-number. For example, 18 has reversed binary expansion (0,1,0,0,1), and since the binary indices of 2 and 5 are {2} and {1,3} respectively, the BII-number of {{2},{1,3}} is 18. Elements of a set-system are sometimes called edges.
The spanning edge-connectivity of a set-system is the minimum number of edges that must be removed (without removing incident vertices) to obtain a set-system that is disconnected or covers fewer vertices.

Examples

			The sequence of terms together with their corresponding set-systems begins:
     0: {}
     1: {{1}}
    52: {{1,2},{1,3},{2,3}}
   116: {{1,2},{1,3},{2,3},{1,2,3}}
  3952: {{1,3},{2,3},{1,4},{2,4},{3,4},{1,2,3},{1,2,4}}
  8052: {{1,2},{1,3},{2,3},{1,4},{2,4},{3,4},{1,2,3},{1,2,4},{1,3,4}}
		

Crossrefs

The same for cut-connectivity is A327234.
The same for non-spanning edge-connectivity is A002450.
The spanning edge-connectivity of the set-system with BII-number n is A327144(n).

A327110 BII-numbers of set-systems with spanning edge-connectivity 3.

Original entry on oeis.org

116, 117, 118, 119, 124, 125, 126, 127, 1796, 1797, 1798, 1799, 1904, 1905, 1906, 1907, 1908, 1909, 1910, 1911, 1912, 1913, 1914, 1915, 1916, 1917, 1918, 1919, 1924, 1925, 1926, 1927, 2032, 2033, 2034, 2035, 2036, 2037, 2038, 2039, 2040, 2041, 2042, 2043, 2044
Offset: 1

Views

Author

Gus Wiseman, Oct 03 2019

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. We define the set-system with BII-number n to be obtained by taking the binary indices of each binary index of n. Every set-system (finite set of finite nonempty sets) has a different BII-number. For example, 18 has reversed binary expansion (0,1,0,0,1), and since the binary indices of 2 and 5 are {2} and {1,3} respectively, the BII-number of {{2},{1,3}} is 18. Elements of a set-system are sometimes called edges.
The spanning edge-connectivity of a set-system is the minimum number of edges that must be removed (without removing incident vertices) to obtain a set-system that is disconnected or covers fewer vertices.

Examples

			The sequence of all set-systems with spanning edge-connectivity 3 together with their BII-numbers begins:
   116: {{1,2},{1,3},{2,3},{1,2,3}}
   117: {{1},{1,2},{1,3},{2,3},{1,2,3}}
   118: {{2},{1,2},{1,3},{2,3},{1,2,3}}
   119: {{1},{2},{1,2},{1,3},{2,3},{1,2,3}}
   124: {{1,2},{3},{1,3},{2,3},{1,2,3}}
   125: {{1},{1,2},{3},{1,3},{2,3},{1,2,3}}
   126: {{2},{1,2},{3},{1,3},{2,3},{1,2,3}}
   127: {{1},{2},{1,2},{3},{1,3},{2,3},{1,2,3}}
  1796: {{1,2},{1,4},{2,4},{1,2,4}}
  1797: {{1},{1,2},{1,4},{2,4},{1,2,4}}
  1798: {{2},{1,2},{1,4},{2,4},{1,2,4}}
  1799: {{1},{2},{1,2},{1,4},{2,4},{1,2,4}}
  1904: {{1,3},{2,3},{1,2,3},{1,4},{2,4},{1,2,4}}
  1905: {{1},{1,3},{2,3},{1,2,3},{1,4},{2,4},{1,2,4}}
  1906: {{2},{1,3},{2,3},{1,2,3},{1,4},{2,4},{1,2,4}}
  1907: {{1},{2},{1,3},{2,3},{1,2,3},{1,4},{2,4},{1,2,4}}
  1908: {{1,2},{1,3},{2,3},{1,2,3},{1,4},{2,4},{1,2,4}}
  1909: {{1},{1,2},{1,3},{2,3},{1,2,3},{1,4},{2,4},{1,2,4}}
  1910: {{2},{1,2},{1,3},{2,3},{1,2,3},{1,4},{2,4},{1,2,4}}
  1911: {{1},{2},{1,2},{1,3},{2,3},{1,2,3},{1,4},{2,4},{1,2,4}}
		

Crossrefs

Positions of 3's in A327144.
BII-numbers for spanning edge-connectivity 2 are A327108.
BII-numbers for spanning edge-connectivity >= 2 are A327109.
BII-numbers for spanning edge-connectivity 1 are A327111.

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],Length[Intersection@@s[[#]]]>0&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    spanEdgeConn[vts_,eds_]:=Length[eds]-Max@@Length/@Select[Subsets[eds],Union@@#!=vts||Length[csm[#]]!=1&];
    Select[Range[1000],spanEdgeConn[Union@@bpe/@bpe[#],bpe/@bpe[#]]==3&]
Previous Showing 21-24 of 24 results.