A327228
Number of set-systems with n vertices and at least one endpoint/leaf.
Original entry on oeis.org
0, 1, 6, 65, 3297, 2537672, 412184904221, 4132070624893905681577, 174224571863520492218909428465944685216436, 133392486801388257127953774730008469745829658368044283629394202488602260177922751
Offset: 0
The a(2) = 6 set-systems:
{{1}}
{{2}}
{{1,2}}
{{1},{2}}
{{1},{1,2}}
{{2},{1,2}}
The specialization to simple graphs is
A245797.
BII-numbers of these set-systems are
A327105.
-
Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],Min@@Length/@Split[Sort[Join@@#]]==1&]],{n,0,4}]
A327197
Number of set-systems covering n vertices with cut-connectivity 1.
Original entry on oeis.org
0, 1, 0, 24, 1984
Offset: 0
The a(3) = 24 set-systems:
{12}{13} {1}{12}{13} {1}{2}{12}{13} {1}{2}{3}{12}{13}
{12}{23} {1}{12}{23} {1}{2}{12}{23} {1}{2}{3}{12}{23}
{13}{23} {1}{13}{23} {1}{2}{13}{23} {1}{2}{3}{13}{23}
{2}{12}{13} {1}{3}{12}{13}
{2}{12}{23} {1}{3}{12}{23}
{2}{13}{23} {1}{3}{13}{23}
{3}{12}{13} {2}{3}{12}{13}
{3}{12}{23} {2}{3}{12}{23}
{3}{13}{23} {2}{3}{13}{23}
The BII-numbers of these set-systems are
A327098.
The same for cut-connectivity 2 is
A327113.
The non-covering version is
A327128.
Cf.
A003465,
A052442,
A052443,
A259862,
A323818,
A326786,
A327101,
A327112,
A327114,
A327126,
A327229.
-
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
cutConnSys[vts_,eds_]:=If[Length[vts]==1,1,Min@@Length/@Select[Subsets[vts],Function[del,csm[DeleteCases[DeleteCases[eds,Alternatives@@del,{2}],{}]]!={Complement[vts,del]}]]];
Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],Union@@#==Range[n]&&cutConnSys[Range[n],#]==1&]],{n,0,3}]
A327100
BII-numbers of antichains of sets with cut-connectivity 1.
Original entry on oeis.org
1, 2, 8, 20, 36, 48, 128, 260, 272, 276, 292, 304, 308, 320, 516, 532, 544, 548, 560, 564, 576, 768, 784, 788, 800, 804, 1040, 1056, 2064, 2068, 2080, 2084, 2096, 2100, 2112, 2304, 2308, 2324, 2336, 2352, 2560, 2564, 2576, 2596, 2608, 2816, 2820, 2832, 2848
Offset: 1
The sequence of all antichains of sets with vertex-connectivity 1 together with their BII-numbers begins:
1: {{1}}
2: {{2}}
8: {{3}}
20: {{1,2},{1,3}}
36: {{1,2},{2,3}}
48: {{1,3},{2,3}}
128: {{4}}
260: {{1,2},{1,4}}
272: {{1,3},{1,4}}
276: {{1,2},{1,3},{1,4}}
292: {{1,2},{2,3},{1,4}}
304: {{1,3},{2,3},{1,4}}
308: {{1,2},{1,3},{2,3},{1,4}}
320: {{1,2,3},{1,4}}
516: {{1,2},{2,4}}
532: {{1,2},{1,3},{2,4}}
544: {{2,3},{2,4}}
548: {{1,2},{2,3},{2,4}}
560: {{1,3},{2,3},{2,4}}
564: {{1,2},{1,3},{2,3},{2,4}}
BII numbers of antichains with vertex-connectivity >= 1 are
A326750.
BII-numbers for cut-connectivity 2 are
A327082.
BII-numbers for cut-connectivity 1 are
A327098.
Cf.
A000120,
A000372,
A006126,
A048143,
A048793,
A070939,
A322390,
A326031,
A326749,
A326751,
A327071,
A327111.
-
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
stableQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
cutConnSys[vts_,eds_]:=If[Length[vts]==1,1,Min@@Length/@Select[Subsets[vts],Function[del,csm[DeleteCases[DeleteCases[eds,Alternatives@@del,{2}],{}]]!={Complement[vts,del]}]]];
Select[Range[0,100],stableQ[bpe/@bpe[#],SubsetQ]&&cutConnSys[Union@@bpe/@bpe[#],bpe/@bpe[#]]==1&]
A327128
Number of set-systems with n vertices whose edge-set has cut-connectivity 1.
Original entry on oeis.org
0, 1, 2, 27, 2084
Offset: 0
The BII-numbers of these set-systems are
A327098.
Cf.
A003465,
A052442,
A052443,
A259862,
A323818,
A326786,
A327101,
A327112,
A327113,
A327114,
A327126,
A327229.
-
csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],Length[Intersection@@s[[#]]]>0&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
cutConnSys[vts_,eds_]:=If[Length[vts]==1,1,Min@@Length/@Select[Subsets[vts],Function[del,csm[DeleteCases[DeleteCases[eds,Alternatives@@del,{2}],{}]]!={Complement[vts,del]}]]];
Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],cutConnSys[Union@@#,#]==1&]],{n,0,3}]
A327234
Smallest BII-number of a set-system with cut-connectivity n.
Original entry on oeis.org
0, 1, 4, 52, 2868
Offset: 0
The sequence of terms together with their corresponding set-systems:
0: {}
1: {{1}}
4: {{1,2}}
52: {{1,2},{1,3},{2,3}}
2868: {{1,2},{1,3},{2,3},{1,4},{2,4},{3,4}}
The same for spanning edge-connectivity is
A327147.
The cut-connectivity of the set-system with BII-number n is
A326786(n).
Cf.
A000120,
A002450,
A029931,
A048793,
A070939,
A259862,
A326031,
A327082,
A327098,
A327125,
A327126,
A327127,
A327373.
Comments