cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A327356 Number of connected separable antichains of nonempty sets covering n vertices (vertex-connectivity 1).

Original entry on oeis.org

0, 0, 1, 3, 40, 1365
Offset: 0

Views

Author

Gus Wiseman, Sep 11 2019

Keywords

Comments

An antichain is a set of sets, none of which is a subset of any other. It is covering if there are no isolated vertices.
The vertex-connectivity of a set-system is the minimum number of vertices that must be removed (along with any resulting empty edges) to obtain a non-connected set-system or singleton. Note that this means a single node has vertex-connectivity 0.

Examples

			Non-isomorphic representatives of the a(4) = 40 set-systems:
  {{1,2},{1,3,4}}
  {{1,2},{1,3},{1,4}}
  {{1,2},{1,3},{2,4}}
  {{1,2},{1,3},{1,4},{2,3}}
		

Crossrefs

Column k = 1 of A327351.
The graphical case is A327336.
The unlabeled version is A327436.

Programs

  • Mathematica
    csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],Length[Intersection@@s[[#]]]>0&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
    vertConnSys[vts_,eds_]:=Min@@Length/@Select[Subsets[vts],Function[del,Length[del]==Length[vts]-1||csm[DeleteCases[DeleteCases[eds,Alternatives@@del,{2}],{}]]!={Complement[vts,del]}]];
    Table[Length[Select[stableSets[Subsets[Range[n],{1,n}],SubsetQ],vertConnSys[Range[n],#]==1&]],{n,0,4}]

A327805 Triangle read by rows where T(n,k) is the number of unlabeled simple graphs with n vertices and vertex-connectivity >= k.

Original entry on oeis.org

1, 1, 0, 2, 1, 0, 4, 2, 1, 0, 11, 6, 3, 1, 0, 34, 21, 10, 3, 1, 0, 156, 112, 56, 17, 4, 1, 0, 1044, 853, 468, 136, 25, 4, 1, 0, 12346, 11117, 7123, 2388, 384, 39, 5, 1, 0, 274668, 261080, 194066, 80890, 14480, 1051, 59, 5, 1, 0, 12005168, 11716571, 9743542, 5114079, 1211735, 102630, 3211, 87, 6, 1, 0
Offset: 0

Views

Author

Gus Wiseman, Sep 26 2019

Keywords

Comments

The vertex-connectivity of a graph is the minimum number of vertices that must be removed (along with any incident edges) to obtain a non-connected graph or singleton. Note that this means a single node has vertex-connectivity 0.

Examples

			Triangle begins:
   1
   1  0
   2  1  0
   4  2  1  0
  11  6  3  1  0
  34 21 10  3  1  0
		

Crossrefs

Row-wise partial sums of A259862.
The labeled version is A327363.
The covering case is A327365, from which this sequence differs only in the k = 0 column.
Column k = 0 is A000088 (graphs).
Column k = 1 is A001349 (connected graphs), if we assume A001349(0) = A001349(1) = 0.
Column k = 2 is A002218 (2-connected graphs), if we assume A002218(2) = 0.
The triangle for vertex-connectivity exactly k is A259862.

Formula

T(n,k) = Sum_{j=k..n} A259862(n,j).

Extensions

Terms a(21) and beyond from Andrew Howroyd, Dec 26 2020

A327436 Number of connected, unlabeled antichains of nonempty subsets of {1..n} covering n vertices with at least one cut-vertex (vertex-connectivity 1).

Original entry on oeis.org

0, 0, 1, 1, 4, 29
Offset: 0

Views

Author

Gus Wiseman, Sep 11 2019

Keywords

Examples

			Non-isomorphic representatives of the a(2) = 1 through a(5) = 29 antichains:
  {12}  {12}{13}  {12}{134}         {12}{1345}
                  {12}{13}{14}      {123}{145}
                  {12}{13}{24}      {12}{13}{145}
                  {12}{13}{14}{23}  {12}{13}{245}
                                    {13}{24}{125}
                                    {13}{124}{125}
                                    {14}{123}{235}
                                    {12}{13}{14}{15}
                                    {12}{13}{14}{25}
                                    {12}{13}{24}{35}
                                    {12}{13}{14}{235}
                                    {12}{13}{23}{145}
                                    {12}{13}{45}{234}
                                    {12}{14}{23}{135}
                                    {12}{15}{134}{234}
                                    {15}{23}{124}{134}
                                    {15}{123}{124}{134}
                                    {15}{123}{124}{234}
                                    {12}{13}{14}{15}{23}
                                    {12}{13}{14}{23}{25}
                                    {12}{13}{14}{23}{45}
                                    {12}{13}{15}{24}{34}
                                    {12}{13}{14}{15}{234}
                                    {12}{13}{14}{25}{234}
                                    {12}{13}{14}{15}{23}{24}
                                    {12}{13}{14}{15}{23}{45}
                                    {12}{13}{14}{23}{24}{35}
                                    {15}{123}{124}{134}{234}
                                    {12}{13}{14}{15}{23}{24}{34}
		

Crossrefs

Formula

a(n > 2) = A261006(n) - A305028(n).

A327363 Triangle read by rows where T(n,k) is the number of labeled simple graphs with n vertices and vertex-connectivity >= k.

Original entry on oeis.org

1, 1, 0, 2, 1, 0, 8, 4, 1, 0, 64, 38, 10, 1, 0, 1024, 728, 238, 26, 1, 0
Offset: 0

Views

Author

Gus Wiseman, Sep 26 2019

Keywords

Comments

The vertex-connectivity of a graph is the minimum number of vertices that must be removed (along with any incident edges) to obtain a non-connected graph or singleton.

Examples

			Triangle begins:
     1
     1    0
     2    1    0
     8    4    1    0
    64   38   10    1    0
  1024  728  238   26    1    0
		

Crossrefs

Column k = 0 is A006125.
Column k = 1 is A001187.
Column k = 2 is A013922.
The unlabeled version is A327805.
Row-wise partial sums of A327334 (vertex-connectivity exactly k).

Programs

  • Mathematica
    vertConnSys[vts_,eds_]:=Min@@Length/@Select[Subsets[vts],Function[del,Length[del]==Length[vts]-1||csm[DeleteCases[DeleteCases[eds,Alternatives@@del,{2}],{}]]!={Complement[vts,del]}]];
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]],vertConnSys[Range[n],#]>=k&]],{n,0,4},{k,0,n}]
Previous Showing 11-14 of 14 results.