A363950
Numbers whose prime indices have rounded-up mean 2.
Original entry on oeis.org
3, 6, 9, 10, 12, 18, 20, 24, 27, 28, 30, 36, 40, 48, 54, 56, 60, 72, 80, 81, 84, 88, 90, 96, 100, 108, 112, 120, 144, 160, 162, 168, 176, 180, 192, 200, 208, 216, 224, 240, 243, 252, 264, 270, 280, 288, 300, 320, 324, 336, 352, 360, 384, 400, 416, 432, 448
Offset: 1
The terms together with their prime indices begin:
3: {2}
6: {1,2}
9: {2,2}
10: {1,3}
12: {1,1,2}
18: {1,2,2}
20: {1,1,3}
24: {1,1,1,2}
27: {2,2,2}
28: {1,1,4}
30: {1,2,3}
36: {1,1,2,2}
40: {1,1,1,3}
48: {1,1,1,1,2}
54: {1,2,2,2}
56: {1,1,1,4}
60: {1,1,2,3}
72: {1,1,1,2,2}
80: {1,1,1,1,3}
81: {2,2,2,2}
For mean 1 we have
A000079 except 1.
Partitions of this type are counted by
A026905 redoubled.
-
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[1000],Ceiling[Mean[prix[#]]]==2&]
A363948
Numbers whose prime indices have mean < 3/2.
Original entry on oeis.org
2, 4, 8, 12, 16, 24, 32, 48, 64, 72, 80, 96, 128, 144, 160, 192, 256, 288, 320, 384, 432, 448, 480, 512, 576, 640, 768, 864, 896, 960, 1024, 1152, 1280, 1536, 1728, 1792, 1920, 2048, 2304, 2560, 2592, 2688, 2816, 2880, 3072, 3200, 3456, 3584, 3840, 4096, 4608
Offset: 1
The initial terms, prime indices, and means:
2: {1} -> 1
4: {1,1} -> 1
8: {1,1,1} -> 1
12: {1,1,2} -> 4/3
16: {1,1,1,1} -> 1
24: {1,1,1,2} -> 5/4
32: {1,1,1,1,1} -> 1
48: {1,1,1,1,2} -> 6/5
64: {1,1,1,1,1,1} -> 1
72: {1,1,1,2,2} -> 7/5
80: {1,1,1,1,3} -> 7/5
96: {1,1,1,1,1,2} -> 7/6
These partitions are counted by
A363947.
A360005 gives twice the median of prime indices.
A363950 ranks partitions with low mean 2, counted by
A026905 redoubled.
Cf.
A051293,
A124944,
A327473,
A327476,
A327482,
A359889,
A363727,
A363942,
A363943,
A363946,
A363951.
-
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n], {p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[100],Mean[prix[#]]<3/2&]
A362621
One and numbers whose multiset of prime factors (with multiplicity) has the same median as maximum.
Original entry on oeis.org
1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 18, 19, 23, 25, 27, 29, 31, 32, 37, 41, 43, 47, 49, 50, 53, 54, 59, 61, 64, 67, 71, 73, 75, 79, 81, 83, 89, 97, 98, 101, 103, 107, 108, 109, 113, 121, 125, 127, 128, 131, 137, 139, 147, 149, 151, 157, 162, 163, 167, 169
Offset: 1
The prime factorization of 108 is 2*2*3*3*3, and the multiset {2,2,3,3,3} has median 3 and maximum 3, so 108 is in the sequence.
The prime factorization of 2250 is 2*3*3*5*5*5, and the multiset {2,3,3,5,5,5} has median 4 and maximum 5, so 2250 is not in the sequence.
The terms together with their prime indices begin:
1: {} 25: {3,3} 64: {1,1,1,1,1,1}
2: {1} 27: {2,2,2} 67: {19}
3: {2} 29: {10} 71: {20}
4: {1,1} 31: {11} 73: {21}
5: {3} 32: {1,1,1,1,1} 75: {2,3,3}
7: {4} 37: {12} 79: {22}
8: {1,1,1} 41: {13} 81: {2,2,2,2}
9: {2,2} 43: {14} 83: {23}
11: {5} 47: {15} 89: {24}
13: {6} 49: {4,4} 97: {25}
16: {1,1,1,1} 50: {1,3,3} 98: {1,4,4}
17: {7} 53: {16} 101: {26}
18: {1,2,2} 54: {1,2,2,2} 103: {27}
19: {8} 59: {17} 107: {28}
23: {9} 61: {18} 108: {1,1,2,2,2}
Partitions of this type are counted by
A053263.
For parts at middle position (instead of median) we have
A362622.
A362611 counts modes in prime factorization, triangle version
A362614.
A362613 counts co-modes in prime factorization, triangle version
A362615.
A363730
Numbers whose prime indices have different mean, median, and mode.
Original entry on oeis.org
42, 60, 66, 70, 78, 84, 102, 114, 130, 132, 138, 140, 150, 154, 156, 165, 170, 174, 180, 182, 186, 190, 195, 204, 220, 222, 228, 230, 231, 246, 255, 258, 260, 266, 276, 282, 285, 286, 290, 294, 308, 310, 315, 318, 322, 330, 340, 345, 348, 354, 357, 360, 364
Offset: 1
The prime indices of 180 are {1,1,2,2,3}, with mean 9/5, median 2, modes {1,2}, so 180 is in the sequence.
The prime indices of 108 are {1,1,2,2,2}, with mean 8/5, median 2, modes {2}, so 108 is not in the sequence.
The terms together with their prime indices begin:
42: {1,2,4}
60: {1,1,2,3}
66: {1,2,5}
70: {1,3,4}
78: {1,2,6}
84: {1,1,2,4}
102: {1,2,7}
114: {1,2,8}
130: {1,3,6}
132: {1,1,2,5}
138: {1,2,9}
140: {1,1,3,4}
150: {1,2,3,3}
These partitions are counted by
A363720
A360005 gives twice the median of prime indices.
Just two statistics:
- (median) = (mode): counted by
A363740.
-
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
modes[ms_]:=Select[Union[ms],Count[ms,#]>=Max@@Length/@Split[ms]&];
Select[Range[100],{Mean[prix[#]]}!={Median[prix[#]]}!=modes[prix[#]]&]
A364061
Numbers whose exponent of 2 in their canonical prime factorization is smaller than all the other exponents.
Original entry on oeis.org
2, 4, 8, 16, 18, 32, 50, 54, 64, 98, 108, 128, 162, 242, 250, 256, 324, 338, 450, 486, 500, 512, 578, 648, 686, 722, 882, 972, 1024, 1058, 1250, 1350, 1372, 1458, 1682, 1922, 1944, 2048, 2178, 2250, 2450, 2500, 2646, 2662, 2738, 2916, 3042, 3362, 3698, 3888
Offset: 1
The terms together with their prime factors begin:
2 = 2
4 = 2*2
8 = 2*2*2
16 = 2*2*2*2
18 = 2*3*3
32 = 2*2*2*2*2
50 = 2*5*5
54 = 2*3*3*3
64 = 2*2*2*2*2*2
98 = 2*7*7
108 = 2*2*3*3*3
128 = 2*2*2*2*2*2*2
Partitions of this type are counted by
A364062.
Cf.
A000265,
A007814,
A327473,
A327476,
A362616,
A360014,
A363722,
A363723,
A363725,
A363727,
A363730.
-
filter:= proc(n) local F,F2,Fo;
F:= ifactors(n)[2];
F2,Fo:= selectremove(t -> t[1]=2, F);
Fo = [] or F2[1,2] < min(Fo[..,2])
end proc:
select(filter, 2*[$1..5000]); # Robert Israel, Apr 22 2024
-
prifacs[n_]:=If[n==1,{},Flatten[ConstantArray@@@FactorInteger[n]]];
comodes[ms_]:=Select[Union[ms],Count[ms,#]<=Min@@Length/@Split[ms]&];
Select[Range[100],comodes[prifacs[#]]=={2}&]
-
from sympy import factorint
from itertools import count, islice
def A364061_gen(startvalue=2): # generator of terms >= startvalue
return filter(lambda n:(l:=(~n&n-1).bit_length()) < min(factorint(m:=n>>l).values(),default=0) or m==1, count(max(startvalue+startvalue&1,2),2))
A364061_list = list(islice(A364061_gen(),30)) # Chai Wah Wu, Jul 14 2023
A362622
One and numbers whose prime factorization has its greatest part at a middle position.
Original entry on oeis.org
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 25, 26, 27, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 43, 46, 47, 49, 50, 51, 53, 54, 55, 57, 58, 59, 61, 62, 64, 65, 67, 69, 71, 73, 74, 75, 77, 79, 81, 82, 83, 85, 86, 87, 89, 91
Offset: 1
The prime factorization of 150 is 5*5*3*2, with middle parts {3,5}, so 150 is in the sequence.
The prime factorization of 90 is 5*3*3*2, with middle parts {3,3}, so 90 is not in the sequence.
Partitions of this type are counted by
A237824.
The version for median instead of middles is
A362621, counted by
A053263.
A362611 counts modes in prime factorization.
A362613 counts co-modes in prime factorization.
-
mpm[q_]:=MemberQ[If[OddQ[Length[q]],{Median[q]},{q[[Length[q]/2]],q[[Length[q]/2+1]]}],Max@@q];
Select[Range[100],#==1||mpm[Flatten[Apply[ConstantArray,FactorInteger[#],{1}]]]&]
A362619
One and all numbers whose greatest prime factor is a mode, meaning it appears at least as many times as each of the others.
Original entry on oeis.org
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 25, 26, 27, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 46, 47, 49, 50, 51, 53, 54, 55, 57, 58, 59, 61, 62, 64, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83
Offset: 1
The prime factorization of 300 is 2*2*3*5*5, with modes {2,5} and maximum 5, so 300 is in the sequence.
Partitions of this type are counted by
A171979.
A362605 ranks partitions with a more than one mode, counted by
A362607.
A362606 ranks partitions with a more than one co-mode, counted by
A362609.
A362611 counts modes in prime factorization, triangle version
A362614.
A362613 counts co-modes in prime factorization, triangle version
A362615.
A362621 ranks partitions with median equal to maximum, counted by
A053263.
-
prifacs[n_]:=If[n==1,{},Flatten[ConstantArray@@@FactorInteger[n]]];
Select[Range[100],MemberQ[Commonest[prifacs[#]],Max[prifacs[#]]]&]
A363729
Numbers that are not a power of a prime but whose prime indices satisfy (mean) = (median) = (mode), assuming there is a unique mode.
Original entry on oeis.org
90, 270, 525, 550, 756, 810, 1666, 1911, 1950, 2268, 2430, 2625, 2695, 2700, 2750, 5566, 6762, 6804, 6897, 7128, 7290, 8100, 8500, 9310, 9750, 10285, 10478, 11011, 11550, 11662, 12250, 12375, 12495, 13125, 13377, 13750, 14014, 14703, 18865, 19435, 20412, 21384
Offset: 1
The prime indices of 6897 are {2,5,5,8}, with mean 5, median 5, and modes {5}, so 6897 is in the sequence.
The terms together with their prime indices begin:
90: {1,2,2,3}
270: {1,2,2,2,3}
525: {2,3,3,4}
550: {1,3,3,5}
756: {1,1,2,2,2,4}
810: {1,2,2,2,2,3}
1666: {1,4,4,7}
1911: {2,4,4,6}
1950: {1,2,3,3,6}
2268: {1,1,2,2,2,2,4}
2430: {1,2,2,2,2,2,3}
For just primes instead of prime powers we have
A363722.
These partitions are counted by
A363728.
A360005 gives twice the median of prime indices.
Just two statistics:
- (median) = (mode): counted by
A363740.
Cf.
A215366,
A327473,
A327476,
A359893,
A359908,
A360009,
A360248,
A360550,
A363721,
A363725,
A363741.
-
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
modes[ms_]:=Select[Union[ms],Count[ms,#]>=Max@@Length/@Split[ms]&];
Select[Range[1000],!PrimePowerQ[#]&&{Mean[prix[#]]}=={Median[prix[#]]}==modes[prix[#]]&]
A363951
Numbers whose prime indices satisfy (length) = (mean), or (sum) = (length)^2.
Original entry on oeis.org
2, 9, 10, 68, 78, 98, 99, 105, 110, 125, 328, 444, 558, 620, 783, 812, 870, 966, 988, 1012, 1035, 1150, 1156, 1168, 1197, 1254, 1326, 1330, 1425, 1521, 1666, 1683, 1690, 1704, 1785, 1870, 1911, 2002, 2125, 2145, 2275, 2401, 2412, 2541, 2662, 2680, 2695, 3025
Offset: 1
The terms together with their prime indices begin:
2: {1}
9: {2,2}
10: {1,3}
68: {1,1,7}
78: {1,2,6}
98: {1,4,4}
99: {2,2,5}
105: {2,3,4}
110: {1,3,5}
125: {3,3,3}
328: {1,1,1,13}
444: {1,1,2,12}
558: {1,2,2,11}
620: {1,1,3,11}
783: {2,2,2,10}
812: {1,1,4,10}
870: {1,2,3,10}
966: {1,2,4,9}
988: {1,1,6,8}
Partitions of this type are counted by
A364055, without zeros
A206240.
A363950 ranks partitions with low mean 2, counted by
A026905 redoubled.
-
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[100],Mean[prix[#]]==PrimeOmega[#]&]
A359892
Members of A026424 (numbers with an odd number of prime factors) whose prime indices do not have the same mean as median.
Original entry on oeis.org
12, 18, 20, 28, 42, 44, 45, 48, 50, 52, 63, 66, 68, 70, 72, 75, 76, 78, 80, 92, 98, 99, 102, 108, 112, 114, 116, 117, 120, 124, 130, 138, 147, 148, 153, 154, 162, 164, 165, 168, 170, 171, 172, 174, 175, 176, 180, 182, 186, 188, 190, 192, 195, 200, 207, 208
Offset: 1
The terms together with their prime indices begin:
12: {1,1,2}
18: {1,2,2}
20: {1,1,3}
28: {1,1,4}
42: {1,2,4}
44: {1,1,5}
45: {2,2,3}
48: {1,1,1,1,2}
50: {1,3,3}
52: {1,1,6}
63: {2,2,4}
66: {1,2,5}
68: {1,1,7}
70: {1,3,4}
72: {1,1,1,2,2}
For example, the prime indices of 180 are {1,1,2,2,3}, with mean 9/5 and median 2, so 180 is in the sequence.
A subset of
A026424 = numbers with odd bigomega.
The RHS (median of prime indices) is
A360005/2.
A316413 lists numbers whose prime indices have integer mean.
A359902 counts odd-length partitions by median.
Cf.
A240219,
A327473,
A327476,
A348551,
A359894,
A359898,
A359899,
A359900,
A359911,
A359912,
A360006-
A360009.
-
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[100],OddQ[PrimeOmega[#]]&&Mean[prix[#]]!=Median[prix[#]]&]
Comments