cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A328434 Number of inversion sequences of length n avoiding the consecutive patterns 101, 102, 201, and 210.

Original entry on oeis.org

1, 1, 2, 6, 21, 81, 346, 1630, 8350, 45958, 269815, 1681285, 11071336, 76743040, 558062437, 4244853573, 33687390663, 278296576327, 2388351295760, 21254019548162, 195801111412320, 1864508416302520, 18326903140310011, 185711672802101781, 1937795878138303715
Offset: 0

Views

Author

Juan S. Auli, Oct 16 2019

Keywords

Comments

A length n inversion sequence e_1e_2...e_n is a sequence of integers such that 0 <= e_i < i. The term a(n) counts the inversion sequences of length n with no entries e_i, e_{i+1}, e_{i+2} such that e_i > e_{i+1} != e_{i+2}. This is the same as the set of inversion sequences of length n avoiding the consecutive patterns 101, 102, 201, and 210.

Examples

			Note that a(4)=21. Indeed, of the 24 inversion sequences of length 4, the only ones that do not avoid the consecutive patterns 101, 102, 201, and 210 are 0101, 0102 and 0103.
		

Crossrefs

Programs

  • Maple
    # after Alois P. Heinz in A328357
    b := proc(n, x, t) option remember; `if`(n=0, 1, add(
           `if`(t and i>x, 0, b(n-1, i, i<>x and x>-1)), i=0..n-1))
         end proc:
    a := n -> b(n, -1, false):
    seq(a(n), n = 0 .. 24);
  • Mathematica
    b[n_, x_, t_] := b[n, x, t] = If[n == 0, 1, Sum[If[t && i > x, 0, b[n - 1, i, i != x && x > -1]], {i, 0, n - 1}]];
    a[n_] := b[n, -1, False];
    a /@ Range[0, 24] (* Jean-François Alcover, Mar 02 2020 after Alois P. Heinz in A328357 *)

A328435 Number of inversion sequences of length n avoiding the consecutive patterns 101, 102, and 201.

Original entry on oeis.org

1, 1, 2, 6, 21, 83, 368, 1814, 9837, 58095, 370499, 2534374, 18493023, 143280489, 1173971656, 10136279104, 91936857611, 873547634921, 8673546319685, 89796095349193, 967384904147690, 10825116242427973, 125613702370667158, 1509222589338456874, 18748890945849736182
Offset: 0

Views

Author

Juan S. Auli, Oct 17 2019

Keywords

Comments

A length n inversion sequence e_1e_2...e_n is a sequence of integers such that 0 <= e_i < i. The term a(n) counts the inversion sequences of length n with no entries e_i, e_{i+1}, e_{i+2} such that e_i > e_{i+1} < e_{i+2}. This is the same as the set of inversion sequences of length n avoiding the consecutive patterns 101, 102, and 201.

Examples

			Note that a(4)=21. Indeed, of the 24 inversion sequences of length 4, the only ones that do not avoid the consecutive patterns 101, 102, and 201 are 0101, 0102, and 0103.
		

Crossrefs

Programs

  • Maple
    # after Alois P. Heinz in A328357
    b := proc(n, x, t) option remember; `if`(n = 0, 1, add(
           `if`(t and x < i, 0, b(n - 1, i, i < x)), i = 0 .. n - 1))
         end proc:
    a := n -> b(n, -1, false):
    seq(a(n), n = 0 .. 24);
  • Mathematica
    b[n_, x_, t_] := b[n, x, t] = If[n == 0, 1, Sum[If[t && x < i, 0, b[n - 1, i, i < x]], {i, 0, n - 1}]];
    a[n_] := b[n, -1, False];
    a /@ Range[0, 24] (* Jean-François Alcover, Mar 02 2020 after Alois P. Heinz in A328357 *)

A328436 Number of inversion sequences of length n avoiding the consecutive patterns 000 and 001.

Original entry on oeis.org

1, 1, 2, 3, 9, 37, 190, 1181, 8564, 70914, 659810, 6811371, 77232836, 953969548, 12747856402, 183218649413, 2818050980941, 46182485773217, 803323102085452, 14781372445602234, 286838921699435184, 5854404018902152208, 125367868007259046305, 2810511319383912299122
Offset: 0

Views

Author

Juan S. Auli, Oct 17 2019

Keywords

Comments

A length n inversion sequence e_1e_2...e_n is a sequence of integers such that 0 <= e_i < i. The term a(n) counts the inversion sequences of length n with no entries e_i, e_{i+1}, e_{i+2} such that e_i = e_{i+1} <= e_{i+2}. This is the same as the set of inversion sequences of length n avoiding the consecutive patterns 000 and 001.

Examples

			The a(4)=9 length 4 inversion sequences avoiding the consecutive patterns 000 and 001 are 0100, 0110, 0120, 0101, 0121, 0102, 0122, 0103, and 0123.
		

Crossrefs

Programs

  • Maple
    # after Alois P. Heinz in A328357
    b := proc(n, x, t) option remember; `if`(n = 0, 1, add(
           `if`(t and i = x, 0, b(n - 1, i, i <= x)), i = 0 .. n - 1))
         end proc:
    a := n -> b(n, -1, false):
    seq(a(n), n = 0 .. 24);
  • Mathematica
    b[n_, x_, t_] := b[n, x, t] = If[n == 0, 1, Sum[If[t && i == x, 0, b[n - 1, i, i <= x]], {i, 0, n - 1}]];
    a[n_] := b[n, -1, False];
    a /@ Range[0, 24] (* Jean-François Alcover, Mar 02 2020 after Alois P. Heinz in A328357 *)

A328438 Number of inversion sequences of length n avoiding the consecutive patterns 000 and 011.

Original entry on oeis.org

1, 1, 2, 4, 13, 57, 304, 1937, 14315, 120264, 1131896, 11794453, 134774963, 1675630582, 22516745452, 325188337067, 5022796990606, 82620491929333, 1441894214312037, 26609607869036180, 517741915593936360, 10592513721179374467, 227325651424365263577, 5106351205789851629476
Offset: 0

Views

Author

Juan S. Auli, Oct 17 2019

Keywords

Comments

A length n inversion sequence e_1e_2...e_n is a sequence of integers such that 0 <= e_i < i. The term a(n) counts the inversion sequences of length n with no entries e_i, e_{i+1}, e_{i+2} such that e_i <= e_{i+1} = e_{i+2}. This is the same as the set of inversion sequences of length n avoiding the consecutive patterns 000 and 011.

Examples

			The a(4)=13 length 4 inversion sequences avoiding the consecutive patterns 000 and 011 are 0100, 0010, 0020, 0120, 0101, 0021, 0121, 0102, 0012, 0103, 0013, 0023, and 0123.
		

Crossrefs

Programs

  • Maple
    # after Alois P. Heinz in A328357
    b := proc(n, x, t) option remember; `if`(n = 0, 1, add(
           `if`(t and i <= x, 0, b(n - 1, i, i = x)), i = 0 .. n - 1))
         end proc:
    a := n -> b(n, -1, false):
    seq(a(n), n = 0 .. 24);
  • Mathematica
    b[n_, x_, t_] := b[n, x, t] = If[n == 0, 1, Sum[If[t && i <= x, 0, b[n - 1, i, i == x]], {i, 0, n - 1}]];
    a[n_] := b[n, -1, False];
    a /@ Range[0, 24] (* Jean-François Alcover, Mar 02 2020 after Alois P. Heinz in A328357 *)

A328440 Number of inversion sequences of length n avoiding the consecutive patterns 000 and 100.

Original entry on oeis.org

1, 1, 2, 5, 18, 81, 448, 2920, 21955, 186981, 1779170, 18706222, 215364181, 2694650157, 36408144034, 528302958022, 8193953571315, 135277259197031, 2368556730208679, 43838335667451773, 855200666797199814, 17538187897491897945, 377199969925672569364, 8489656058119117230574
Offset: 0

Views

Author

Juan S. Auli, Oct 17 2019

Keywords

Comments

A length n inversion sequence e_1e_2...e_n is a sequence of integers such that 0 <= e_i < i. The term a(n) counts the inversion sequences of length n with no entries e_i, e_{i+1}, e_{i+2} such that e_i >= e_{i+1} = e_{i+2}. This is the same as the set of inversion sequences of length n avoiding the consecutive patterns 000 and 100.
The term a(n) also counts the inversion sequences of length n with no entries e_i, e_{i+1}, e_{i+2} such that e_i = e_{i+1} >= e_{i+2}. This is the same as the set of inversion sequences of length n avoiding the consecutive patterns 000 and 110, see the Auli and Elizalde reference.

Examples

			The a(4)=18 length 4 inversion sequences avoiding the consecutive patterns 000 and 100 are 0010, 0110, 0020, 0120, 0101, 0011, 0021, 0121, 0102, 0012, 0112, 0022, 0122, 0103, 0013, 0113, 0023, and 0123.
		

Crossrefs

Programs

  • Maple
    # after Alois P. Heinz in A328357
    b := proc(n, x, t) option remember; `if`(n = 0, 1, add(
           `if`(t and x <= i, 0, b(n - 1, i, i = x)), i = 0 .. n - 1))
         end proc:
    a := n -> b(n, -1, false):
    seq(a(n), n = 0 .. 24);
  • Mathematica
    b[n_, x_, t_] := b[n, x, t] = If[n == 0, 1, Sum[If[t && x <= i, 0, b[n - 1, i, i == x]], {i, 0, n - 1}]];
    a[n_] := b[n, -1, False];
    a /@ Range[0, 24] (* Jean-François Alcover, Mar 02 2020 after Alois P. Heinz in A328357 *)

A336070 Number of inversion sequences avoiding the vincular pattern 10-0 (or 10-1).

Original entry on oeis.org

1, 1, 2, 6, 23, 106, 567, 3440, 23286, 173704, 1414102, 12465119, 118205428, 1199306902, 12958274048, 148502304614, 1798680392716, 22953847041950, 307774885768354, 4325220458515307, 63563589415836532, 974883257009308933, 15575374626562632462, 258780875395778033769, 4464364292401926006220
Offset: 0

Views

Author

Michael De Vlieger, Jul 07 2020

Keywords

Comments

From Joerg Arndt, Jan 20 2024: (Start)
a(n) is the number of weak ascent sequences of length n.
A weak ascent sequence is a sequence [d(1), d(2), ..., d(n)] where d(1)=0, d(k)>=0, and d(k) <= 1 + asc([d(1), d(2), ..., d(k-1)]) and asc(.) counts the weak ascents d(j) >= d(j-1) of its argument.
The number of length-n weak ascent sequences with maximal number of weak ascents is A000108(n).
(End)

Examples

			From _Joerg Arndt_, Jan 20 2024: (Start)
There are a(4) = 23 weak ascent sequences (dots for zeros):
   1:  [ . . . . ]
   2:  [ . . . 1 ]
   3:  [ . . . 2 ]
   4:  [ . . . 3 ]
   5:  [ . . 1 . ]
   6:  [ . . 1 1 ]
   7:  [ . . 1 2 ]
   8:  [ . . 1 3 ]
   9:  [ . . 2 . ]
  10:  [ . . 2 1 ]
  11:  [ . . 2 2 ]
  12:  [ . . 2 3 ]
  13:  [ . 1 . . ]
  14:  [ . 1 . 1 ]
  15:  [ . 1 . 2 ]
  16:  [ . 1 1 . ]
  17:  [ . 1 1 1 ]
  18:  [ . 1 1 2 ]
  19:  [ . 1 1 3 ]
  20:  [ . 1 2 . ]
  21:  [ . 1 2 1 ]
  22:  [ . 1 2 2 ]
  23:  [ . 1 2 3 ]
(End)
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, t) option remember; `if`(n=0, 1,
          add(b(n-1, j, t+`if`(j>=i, 1, 0)), j=0..t+1))
        end:
    a:= n-> b(n, -1$2):
    seq(a(n), n=0..25);  # Alois P. Heinz, Jan 23 2024
  • Mathematica
    b[n_, i_, t_] := b[n, i, t] = If[n == 0, 1, Sum[b[n - 1, j, t + If[j >= i, 1, 0]], {j, 0, t + 1}]];
    a[n_] := b[n, -1, -1];
    Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Jan 18 2025, after Alois P. Heinz *)
  • PARI
    \\ see formula (5) on page 18 of the Benyi/Claesson/Dukes reference
    N=40;
    M=matrix(N,N,r,c,-1);  \\ memoization
    a(n,k)=
    {
        if ( n==0 && k==0, return(1) );
        if ( k==0, return(0) );
        if ( n==0, return(0) );
        if ( M[n,k] != -1 , return( M[n,k] ) );
        my( s );
        s = sum( i=0, n, sum( j=0, k-1,
             (-1)^j * binomial(k-j,i) * binomial(i,j) * a( n-i, k-j-1 )) );
        M[n,k] = s;
        return( s );
    }
    for (n=0, N, print1( sum(k=1,n,a(n,k)),", "); );
    \\ print triangle a(n,k), see A369321:
    \\ for (n=0, N, for(k=0,n, print1(a(n,k),", "); ); print(););
    \\ Joerg Arndt, Jan 20 2024

Extensions

a(0)=1 prepended and more terms from Joerg Arndt, Jan 20 2024

A336071 Number of inversion sequences avoiding the vincular pattern 1-01 (or 1-10).

Original entry on oeis.org

1, 2, 6, 23, 107, 584, 3655, 25790, 202495, 1750763
Offset: 1

Views

Author

Michael De Vlieger, Jul 07 2020

Keywords

Crossrefs

A336072 Number of inversion sequences avoiding the vincular pattern 2-01 (or 2-10).

Original entry on oeis.org

1, 2, 6, 24, 118, 680, 4460, 32634, 262536, 2296532
Offset: 1

Views

Author

Michael De Vlieger, Jul 07 2020

Keywords

Crossrefs

Previous Showing 11-18 of 18 results.