A328434
Number of inversion sequences of length n avoiding the consecutive patterns 101, 102, 201, and 210.
Original entry on oeis.org
1, 1, 2, 6, 21, 81, 346, 1630, 8350, 45958, 269815, 1681285, 11071336, 76743040, 558062437, 4244853573, 33687390663, 278296576327, 2388351295760, 21254019548162, 195801111412320, 1864508416302520, 18326903140310011, 185711672802101781, 1937795878138303715
Offset: 0
Note that a(4)=21. Indeed, of the 24 inversion sequences of length 4, the only ones that do not avoid the consecutive patterns 101, 102, 201, and 210 are 0101, 0102 and 0103.
Cf.
A328357,
A328358,
A328429,
A328430,
A328431,
A328432,
A328433,
A328435,
A328436,
A328437,
A328438,
A328439,
A328440,
A328441,
A328442.
-
# after Alois P. Heinz in A328357
b := proc(n, x, t) option remember; `if`(n=0, 1, add(
`if`(t and i>x, 0, b(n-1, i, i<>x and x>-1)), i=0..n-1))
end proc:
a := n -> b(n, -1, false):
seq(a(n), n = 0 .. 24);
-
b[n_, x_, t_] := b[n, x, t] = If[n == 0, 1, Sum[If[t && i > x, 0, b[n - 1, i, i != x && x > -1]], {i, 0, n - 1}]];
a[n_] := b[n, -1, False];
a /@ Range[0, 24] (* Jean-François Alcover, Mar 02 2020 after Alois P. Heinz in A328357 *)
A328435
Number of inversion sequences of length n avoiding the consecutive patterns 101, 102, and 201.
Original entry on oeis.org
1, 1, 2, 6, 21, 83, 368, 1814, 9837, 58095, 370499, 2534374, 18493023, 143280489, 1173971656, 10136279104, 91936857611, 873547634921, 8673546319685, 89796095349193, 967384904147690, 10825116242427973, 125613702370667158, 1509222589338456874, 18748890945849736182
Offset: 0
Note that a(4)=21. Indeed, of the 24 inversion sequences of length 4, the only ones that do not avoid the consecutive patterns 101, 102, and 201 are 0101, 0102, and 0103.
Cf.
A328357,
A328358,
A328429,
A328430,
A328431,
A328432,
A328433,
A328434,
A328436,
A328437,
A328438,
A328439,
A328440,
A328441,
A328442.
-
# after Alois P. Heinz in A328357
b := proc(n, x, t) option remember; `if`(n = 0, 1, add(
`if`(t and x < i, 0, b(n - 1, i, i < x)), i = 0 .. n - 1))
end proc:
a := n -> b(n, -1, false):
seq(a(n), n = 0 .. 24);
-
b[n_, x_, t_] := b[n, x, t] = If[n == 0, 1, Sum[If[t && x < i, 0, b[n - 1, i, i < x]], {i, 0, n - 1}]];
a[n_] := b[n, -1, False];
a /@ Range[0, 24] (* Jean-François Alcover, Mar 02 2020 after Alois P. Heinz in A328357 *)
A328436
Number of inversion sequences of length n avoiding the consecutive patterns 000 and 001.
Original entry on oeis.org
1, 1, 2, 3, 9, 37, 190, 1181, 8564, 70914, 659810, 6811371, 77232836, 953969548, 12747856402, 183218649413, 2818050980941, 46182485773217, 803323102085452, 14781372445602234, 286838921699435184, 5854404018902152208, 125367868007259046305, 2810511319383912299122
Offset: 0
The a(4)=9 length 4 inversion sequences avoiding the consecutive patterns 000 and 001 are 0100, 0110, 0120, 0101, 0121, 0102, 0122, 0103, and 0123.
Cf.
A328357,
A328358,
A328429,
A328430,
A328431,
A328432,
A328433,
A328434,
A328435,
A328437,
A328438,
A328439,
A328440,
A328441,
A328442.
-
# after Alois P. Heinz in A328357
b := proc(n, x, t) option remember; `if`(n = 0, 1, add(
`if`(t and i = x, 0, b(n - 1, i, i <= x)), i = 0 .. n - 1))
end proc:
a := n -> b(n, -1, false):
seq(a(n), n = 0 .. 24);
-
b[n_, x_, t_] := b[n, x, t] = If[n == 0, 1, Sum[If[t && i == x, 0, b[n - 1, i, i <= x]], {i, 0, n - 1}]];
a[n_] := b[n, -1, False];
a /@ Range[0, 24] (* Jean-François Alcover, Mar 02 2020 after Alois P. Heinz in A328357 *)
A328438
Number of inversion sequences of length n avoiding the consecutive patterns 000 and 011.
Original entry on oeis.org
1, 1, 2, 4, 13, 57, 304, 1937, 14315, 120264, 1131896, 11794453, 134774963, 1675630582, 22516745452, 325188337067, 5022796990606, 82620491929333, 1441894214312037, 26609607869036180, 517741915593936360, 10592513721179374467, 227325651424365263577, 5106351205789851629476
Offset: 0
The a(4)=13 length 4 inversion sequences avoiding the consecutive patterns 000 and 011 are 0100, 0010, 0020, 0120, 0101, 0021, 0121, 0102, 0012, 0103, 0013, 0023, and 0123.
Cf.
A328357,
A328358,
A328429,
A328430,
A328431,
A328432,
A328433,
A328434,
A328435,
A328436,
A328437,
A328439,
A328440,
A328441,
A328442.
-
# after Alois P. Heinz in A328357
b := proc(n, x, t) option remember; `if`(n = 0, 1, add(
`if`(t and i <= x, 0, b(n - 1, i, i = x)), i = 0 .. n - 1))
end proc:
a := n -> b(n, -1, false):
seq(a(n), n = 0 .. 24);
-
b[n_, x_, t_] := b[n, x, t] = If[n == 0, 1, Sum[If[t && i <= x, 0, b[n - 1, i, i == x]], {i, 0, n - 1}]];
a[n_] := b[n, -1, False];
a /@ Range[0, 24] (* Jean-François Alcover, Mar 02 2020 after Alois P. Heinz in A328357 *)
A328440
Number of inversion sequences of length n avoiding the consecutive patterns 000 and 100.
Original entry on oeis.org
1, 1, 2, 5, 18, 81, 448, 2920, 21955, 186981, 1779170, 18706222, 215364181, 2694650157, 36408144034, 528302958022, 8193953571315, 135277259197031, 2368556730208679, 43838335667451773, 855200666797199814, 17538187897491897945, 377199969925672569364, 8489656058119117230574
Offset: 0
The a(4)=18 length 4 inversion sequences avoiding the consecutive patterns 000 and 100 are 0010, 0110, 0020, 0120, 0101, 0011, 0021, 0121, 0102, 0012, 0112, 0022, 0122, 0103, 0013, 0113, 0023, and 0123.
Cf.
A328357,
A328358,
A328429,
A328430,
A328431,
A328432,
A328433,
A328434,
A328435,
A328436,
A328437,
A328438,
A328439,
A328441,
A328442.
-
# after Alois P. Heinz in A328357
b := proc(n, x, t) option remember; `if`(n = 0, 1, add(
`if`(t and x <= i, 0, b(n - 1, i, i = x)), i = 0 .. n - 1))
end proc:
a := n -> b(n, -1, false):
seq(a(n), n = 0 .. 24);
-
b[n_, x_, t_] := b[n, x, t] = If[n == 0, 1, Sum[If[t && x <= i, 0, b[n - 1, i, i == x]], {i, 0, n - 1}]];
a[n_] := b[n, -1, False];
a /@ Range[0, 24] (* Jean-François Alcover, Mar 02 2020 after Alois P. Heinz in A328357 *)
A336070
Number of inversion sequences avoiding the vincular pattern 10-0 (or 10-1).
Original entry on oeis.org
1, 1, 2, 6, 23, 106, 567, 3440, 23286, 173704, 1414102, 12465119, 118205428, 1199306902, 12958274048, 148502304614, 1798680392716, 22953847041950, 307774885768354, 4325220458515307, 63563589415836532, 974883257009308933, 15575374626562632462, 258780875395778033769, 4464364292401926006220
Offset: 0
From _Joerg Arndt_, Jan 20 2024: (Start)
There are a(4) = 23 weak ascent sequences (dots for zeros):
1: [ . . . . ]
2: [ . . . 1 ]
3: [ . . . 2 ]
4: [ . . . 3 ]
5: [ . . 1 . ]
6: [ . . 1 1 ]
7: [ . . 1 2 ]
8: [ . . 1 3 ]
9: [ . . 2 . ]
10: [ . . 2 1 ]
11: [ . . 2 2 ]
12: [ . . 2 3 ]
13: [ . 1 . . ]
14: [ . 1 . 1 ]
15: [ . 1 . 2 ]
16: [ . 1 1 . ]
17: [ . 1 1 1 ]
18: [ . 1 1 2 ]
19: [ . 1 1 3 ]
20: [ . 1 2 . ]
21: [ . 1 2 1 ]
22: [ . 1 2 2 ]
23: [ . 1 2 3 ]
(End)
- Alois P. Heinz, Table of n, a(n) for n = 0..400
- Juan S. Auli and Sergi Elizalde, Wilf equivalences between vincular patterns in inversion sequences, arXiv:2003.11533 [math.CO], 2020. See p. 5, Table 1. Gives terms 1-10.
- Beata Benyi, Anders Claesson, and Mark Dukes, Weak ascent sequences and related combinatorial structures, arXiv:2111.03159 [math.CO], (4-November-2021).
Cf.
A000079,
A000108,
A000110,
A022493,
A091768,
A102038,
A113227,
A263777,
A328441,
A336071,
A336072.
-
b:= proc(n, i, t) option remember; `if`(n=0, 1,
add(b(n-1, j, t+`if`(j>=i, 1, 0)), j=0..t+1))
end:
a:= n-> b(n, -1$2):
seq(a(n), n=0..25); # Alois P. Heinz, Jan 23 2024
-
b[n_, i_, t_] := b[n, i, t] = If[n == 0, 1, Sum[b[n - 1, j, t + If[j >= i, 1, 0]], {j, 0, t + 1}]];
a[n_] := b[n, -1, -1];
Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Jan 18 2025, after Alois P. Heinz *)
-
\\ see formula (5) on page 18 of the Benyi/Claesson/Dukes reference
N=40;
M=matrix(N,N,r,c,-1); \\ memoization
a(n,k)=
{
if ( n==0 && k==0, return(1) );
if ( k==0, return(0) );
if ( n==0, return(0) );
if ( M[n,k] != -1 , return( M[n,k] ) );
my( s );
s = sum( i=0, n, sum( j=0, k-1,
(-1)^j * binomial(k-j,i) * binomial(i,j) * a( n-i, k-j-1 )) );
M[n,k] = s;
return( s );
}
for (n=0, N, print1( sum(k=1,n,a(n,k)),", "); );
\\ print triangle a(n,k), see A369321:
\\ for (n=0, N, for(k=0,n, print1(a(n,k),", "); ); print(););
\\ Joerg Arndt, Jan 20 2024
a(0)=1 prepended and more terms from
Joerg Arndt, Jan 20 2024
A336071
Number of inversion sequences avoiding the vincular pattern 1-01 (or 1-10).
Original entry on oeis.org
1, 2, 6, 23, 107, 584, 3655, 25790, 202495, 1750763
Offset: 1
A336072
Number of inversion sequences avoiding the vincular pattern 2-01 (or 2-10).
Original entry on oeis.org
1, 2, 6, 24, 118, 680, 4460, 32634, 262536, 2296532
Offset: 1
Comments