cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A329625 Smallest BII-number of a connected set-system with n edges.

Original entry on oeis.org

0, 1, 5, 7, 23, 31, 63, 127, 383, 511, 1023, 2047, 4095, 8191
Offset: 0

Views

Author

Gus Wiseman, Nov 28 2019

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. We define the set-system with BII-number n to be obtained by taking the binary indices of each binary index of n. Every set-system (finite set of finite nonempty sets of positive integers) has a different BII-number. For example, 18 has reversed binary expansion (0,1,0,0,1), and since the binary indices of 2 and 5 are {2} and {1,3} respectively, the BII-number of {{2},{1,3}} is 18. Elements of a set-system are sometimes called edges.

Examples

			The sequence of terms together with their corresponding set-systems begins:
     0: {}
     1: {{1}}
     5: {{1},{1,2}}
     7: {{1},{2},{1,2}}
    23: {{1},{2},{1,2},{1,3}}
    31: {{1},{2},{1,2},{3},{1,3}}
    63: {{1},{2},{1,2},{3},{1,3},{2,3}}
   127: {{1},{2},{1,2},{3},{1,3},{2,3},{1,2,3}}
   383: {{1},{2},{1,2},{3},{1,3},{2,3},{1,2,3},{1,4}}
   511: {{1},{2},{1,2},{3},{1,3},{2,3},{1,2,3},{4},{1,4}}
		

Crossrefs

The smallest BII-number of a set-system with n edges is A000225(n).
The smallest BII-number of a set-system with n vertices is A072639(n).
BII-numbers of connected set-systems are A326749.
MM-numbers of connected set-systems are A328514.
The case of clutters is A329627.

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],Length[Intersection@@s[[#]]]>0&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    First/@GatherBy[Select[Range[0,1000],Length[csm[bpe/@bpe[#]]]<=1&],Length[bpe[#]]&]

A329629 Products of distinct odd primes of squarefree index.

Original entry on oeis.org

1, 3, 5, 11, 13, 15, 17, 29, 31, 33, 39, 41, 43, 47, 51, 55, 59, 65, 67, 73, 79, 83, 85, 87, 93, 101, 109, 113, 123, 127, 129, 137, 139, 141, 143, 145, 149, 155, 157, 163, 165, 167, 177, 179, 181, 187, 191, 195, 199, 201, 205, 211, 215, 219, 221, 233, 235, 237
Offset: 1

Views

Author

Gus Wiseman, Nov 18 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset of multisets with MM-number n is formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the multiset of multisets with MM-number 78 is {{},{1},{1,2}}. This sequence lists all MM-numbers of set-systems (sets of nonempty sets).

Examples

			The sequence of terms together with their corresponding set-systems begins:
   1: {}
   3: {{1}}
   5: {{2}}
  11: {{3}}
  13: {{1,2}}
  15: {{1},{2}}
  17: {{4}}
  29: {{1,3}}
  31: {{5}}
  33: {{1},{3}}
  39: {{1},{1,2}}
  41: {{6}}
  43: {{1,4}}
  47: {{2,3}}
  51: {{1},{4}}
  55: {{2},{3}}
  59: {{7}}
  65: {{2},{1,2}}
  67: {{8}}
  73: {{2,4}}
		

Crossrefs

Allowing even terms (systems with empty edges) gives A302494.
Classes of MM-numbers: A305078 (connected), A316476 (antichains), A318991 (chains), A320456 (covers), A329559 (clutters).

Programs

  • Mathematica
    Select[Range[100],OddQ[#]&&SquareFreeQ[#]&&And@@SquareFreeQ/@PrimePi/@First/@If[#==1,{},FactorInteger[#]]&]

A329553 Smallest MM-number of a connected set of n multisets.

Original entry on oeis.org

1, 2, 21, 195, 1365, 25935, 435435
Offset: 0

Views

Author

Gus Wiseman, Nov 17 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset of multisets with MM-number n is formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the multiset of multisets with MM-number 78 is {{},{1},{1,2}}.

Examples

			The sequence of terms together with their corresponding systems begins:
       1: {}
       2: {{}}
      21: {{1},{1,1}}
     195: {{1},{2},{1,2}}
    1365: {{1},{2},{1,1},{1,2}}
   25935: {{1},{2},{1,1},{1,2},{1,1,1}}
  435435: {{1},{2},{1,1},{3},{1,2},{1,3}}
		

Crossrefs

MM-numbers of connected sets of sets are A328514.
The weight of the system with MM-number n is A302242(n).
Connected numbers are A305078.
Maximum connected divisor is A327076.
BII-numbers of connected set-systems are A326749.
The smallest BII-number of a connected set-system is A329625.
The case of strict edges is A329552.
The smallest MM-number of a set of n nonempty sets is A329557(n).
Classes of MM-numbers: A305078 (connected), A316476 (antichains), A318991 (chains), A320456 (covers), A329559 (clutters).

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    zsm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],GCD@@s[[#]]>1&]},If[c=={},s,zsm[Sort[Append[Delete[s,List/@c[[1]]],LCM@@s[[c[[1]]]]]]]]];
    dae=Select[Range[100000],SquareFreeQ[#]&&Length[zsm[primeMS[#]]]<=1&];
    Table[dae[[Position[PrimeOmega/@dae,k][[1,1]]]],{k,First[Split[Union[PrimeOmega/@dae],#2==#1+1&]]}]

A340104 Products of distinct primes of nonprime index (A007821).

Original entry on oeis.org

1, 2, 7, 13, 14, 19, 23, 26, 29, 37, 38, 43, 46, 47, 53, 58, 61, 71, 73, 74, 79, 86, 89, 91, 94, 97, 101, 103, 106, 107, 113, 122, 131, 133, 137, 139, 142, 146, 149, 151, 158, 161, 163, 167, 173, 178, 181, 182, 193, 194, 197, 199, 202, 203, 206, 214, 223, 226
Offset: 1

Views

Author

Gus Wiseman, Mar 12 2021

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The sequence of terms together with the corresponding prime indices of prime indices begins:
     1: {}              58: {{},{1,3}}        113: {{1,2,3}}
     2: {{}}            61: {{1,2,2}}         122: {{},{1,2,2}}
     7: {{1,1}}         71: {{1,1,3}}         131: {{1,1,1,1,1}}
    13: {{1,2}}         73: {{2,4}}           133: {{1,1},{1,1,1}}
    14: {{},{1,1}}      74: {{},{1,1,2}}      137: {{2,5}}
    19: {{1,1,1}}       79: {{1,5}}           139: {{1,7}}
    23: {{2,2}}         86: {{},{1,4}}        142: {{},{1,1,3}}
    26: {{},{1,2}}      89: {{1,1,1,2}}       146: {{},{2,4}}
    29: {{1,3}}         91: {{1,1},{1,2}}     149: {{3,4}}
    37: {{1,1,2}}       94: {{},{2,3}}        151: {{1,1,2,2}}
    38: {{},{1,1,1}}    97: {{3,3}}           158: {{},{1,5}}
    43: {{1,4}}        101: {{1,6}}           161: {{1,1},{2,2}}
    46: {{},{2,2}}     103: {{2,2,2}}         163: {{1,8}}
    47: {{2,3}}        106: {{},{1,1,1,1}}    167: {{2,6}}
    53: {{1,1,1,1}}    107: {{1,1,4}}         173: {{1,1,1,3}}
		

Crossrefs

These primes (of nonprime index) are listed by A007821.
The non-strict version is A320628, with odd case A320629.
The odd case is A340105.
The prime instead of nonprime version:
primes: A006450
products: A076610
strict: A302590
The semiprime instead of nonprime version:
primes: A106349
products: A339112
strict: A340020
The squarefree semiprime instead of nonprime version:
strict: A309356
primes: A322551
products: A339113
A056239 gives the sum of prime indices, which are listed by A112798.
A257994 counts prime prime indices.
A302242 is the weight of the multiset of multisets with MM-number n.
A305079 is the number of connected components for MM-number n.
A320911 lists products of squarefree semiprimes (Heinz numbers of A338914).
A320912 lists products of distinct semiprimes (Heinz numbers of A338916).
A330944 counts nonprime prime indices.
A330945 lists numbers with a nonprime prime index (nonprime case: A330948).
A339561 lists products of distinct squarefree semiprimes (A339560).
MM-numbers: A255397 (normal), A302478 (set multisystems), A320630 (set multipartitions), A302494 (sets of sets), A305078 (connected), A316476 (antichains), A318991 (chains), A320456 (covers), A328514 (connected sets of sets), A329559 (clutters), A340019 (half-loop graphs).

Programs

  • Mathematica
    Select[Range[100],SquareFreeQ[#]&&FreeQ[If[#==1,{},FactorInteger[#]],{p_,k_}/;PrimeQ[PrimePi[p]]]&]

Formula

Equals A005117 /\ A320628.

A340105 Odd products of distinct primes of nonprime index (A007821).

Original entry on oeis.org

1, 7, 13, 19, 23, 29, 37, 43, 47, 53, 61, 71, 73, 79, 89, 91, 97, 101, 103, 107, 113, 131, 133, 137, 139, 149, 151, 161, 163, 167, 173, 181, 193, 197, 199, 203, 223, 227, 229, 233, 239, 247, 251, 257, 259, 263, 269, 271, 281, 293, 299, 301, 307, 311, 313, 317
Offset: 1

Views

Author

Gus Wiseman, Mar 12 2021

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The sequence of terms together with the corresponding sets of multisets begins:
     1: {}              91: {{1,1},{1,2}}      173: {{1,1,1,3}}
     7: {{1,1}}         97: {{3,3}}            181: {{1,2,4}}
    13: {{1,2}}        101: {{1,6}}            193: {{1,1,5}}
    19: {{1,1,1}}      103: {{2,2,2}}          197: {{2,2,3}}
    23: {{2,2}}        107: {{1,1,4}}          199: {{1,9}}
    29: {{1,3}}        113: {{1,2,3}}          203: {{1,1},{1,3}}
    37: {{1,1,2}}      131: {{1,1,1,1,1}}      223: {{1,1,1,1,2}}
    43: {{1,4}}        133: {{1,1},{1,1,1}}    227: {{4,4}}
    47: {{2,3}}        137: {{2,5}}            229: {{1,3,3}}
    53: {{1,1,1,1}}    139: {{1,7}}            233: {{2,7}}
    61: {{1,2,2}}      149: {{3,4}}            239: {{1,1,6}}
    71: {{1,1,3}}      151: {{1,1,2,2}}        247: {{1,2},{1,1,1}}
    73: {{2,4}}        161: {{1,1},{2,2}}      251: {{1,2,2,2}}
    79: {{1,5}}        163: {{1,8}}            257: {{3,5}}
    89: {{1,1,1,2}}    167: {{2,6}}            259: {{1,1},{1,1,2}}
		

Crossrefs

These primes (of nonprime index) are listed by A007821.
The non-strict version is A320629, with not necessarily odd version A320628.
The not necessarily odd version is A340104.
The prime instead of odd nonprime version:
primes: A006450
products: A076610
strict: A302590
The squarefree semiprime instead of odd nonprime version:
strict: A309356
primes: A322551
products: A339113
The semiprime instead of odd nonprime version:
primes: A106349
products: A339112
strict: A340020
A001358 lists semiprimes.
A056239 gives the sum of prime indices, which are listed by A112798.
A257994 counts prime prime indices.
A302242 is the weight of the multiset of multisets with MM-number n.
A305079 is the number of connected components for MM-number n.
A330944 counts nonprime prime indices.
A330945 lists numbers with a nonprime prime index (nonprime case: A330948).
A339561 lists products of distinct squarefree semiprimes.
MM-numbers: A255397 (normal), A302478 (set multisystems), A320630 (set multipartitions), A302494 (sets of sets), A305078 (connected), A316476 (antichains), A318991 (chains), A320456 (covers), A328514 (connected sets of sets), A329559 (clutters), A340019 (half-loop graphs).

Programs

  • Mathematica
    Select[Range[1,100,2],SquareFreeQ[#]&&FreeQ[If[#==1,{},FactorInteger[#]],{p_,k_}/;PrimeQ[PrimePi[p]]]&]

Formula

Previous Showing 11-15 of 15 results.