cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 45 results. Next

A385886 Irregular triangle read by rows listing the lengths of maximal anti-runs (sequences of distinct consecutive elements increasing by more than 1) of binary indices, duplicate rows removed.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 3, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 3, 2, 2, 1, 1, 1, 2, 3, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 3, 1, 2, 2, 2, 1, 2, 1, 1, 1, 1, 2, 1, 3, 1, 2, 2, 1, 1, 1, 1, 2, 1
Offset: 0

Views

Author

Gus Wiseman, Jul 14 2025

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.
This is the triangle A384877, except all duplicates after the first instance of each composition are removed. It lists all compositions in order of their first appearance as a row of A384877.

Examples

			The binary indices of 27 are {1,2,4,5}, with maximal anti-runs ((1),(2,4),(5)), with lengths (1,2,1). After removing duplicates, this is our row 10.
The binary indices of 53 are {1,3,5,6}, with maximal anti-runs ((1,3,5),(6)), with lengths (3,1). After removing duplicates, this is our row 16.
Triangle begins:
   0: .
   1: 1
   2: 1 1
   3: 2
   4: 1 1 1
   5: 1 2
   6: 2 1
   7: 1 1 1 1
   8: 3
   9: 1 1 2
  10: 1 2 1
  11: 2 1 1
  12: 1 1 1 1 1
  13: 1 3
  14: 2 2
  15: 1 1 1 2
  16: 3 1
  17: 1 1 2 1
  18: 1 2 1 1
  19: 2 1 1 1
  20: 1 1 1 1 1 1
		

Crossrefs

In the following references, "before" is short for "before removing duplicate rows".
Positions of singleton rows appear to be A001906 = A055588 - 1.
Positions of rows of the form (1,1,...) appear to be A001911-2, before A023758.
Row sums appear to be A200648, before A000120.
Row lengths appear to be A200649, before A384890.
Standard composition numbers of each row appear to be A348366.
Before we had A384877, ranks A385816, firsts A052499.
For runs instead of anti-runs we have A385817, see A245563, A245562, A246029.

Programs

  • Mathematica
    DeleteDuplicates[Table[Length/@Split[Join@@Position[Reverse[IntegerDigits[n,2]],1],#2!=#1+1&],{n,0,100}]]

A382914 Numbers k such that it is not possible to permute a multiset whose multiplicities are the prime indices of k so that the run-lengths are all equal.

Original entry on oeis.org

10, 14, 22, 26, 28, 33, 34, 38, 39, 44, 46, 51, 52, 55, 57, 58, 62, 66, 68, 69, 74, 76, 78, 82, 85, 86, 87, 88, 92, 93, 94, 95, 102, 104, 106, 111, 114, 115, 116, 118, 119, 122, 123, 124, 129, 130, 134, 136, 138, 141, 142, 145, 146, 148, 152, 153, 155, 156
Offset: 1

Views

Author

Gus Wiseman, Apr 09 2025

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798, sum A056239.

Examples

			The terms together with their prime indices begin:
  10: {1,3}
  14: {1,4}
  22: {1,5}
  26: {1,6}
  28: {1,1,4}
  33: {2,5}
  34: {1,7}
  38: {1,8}
  39: {2,6}
  44: {1,1,5}
  46: {1,9}
  51: {2,7}
  52: {1,1,6}
  55: {3,5}
  57: {2,8}
  58: {1,10}
  62: {1,11}
  66: {1,2,5}
		

Crossrefs

For anti-run permutations we have A335126, complement A335127.
Zeros of A382858, anti-run A335125.
For prime indices instead of signature we have A382879, counted by A382915.
For distinct run-lengths we have A382912 (zeros of A382773), complement A382913.
A003963 gives product of prime indices.
A056239 adds up prime indices, row sums of A112798.
A140690 lists numbers whose binary expansion has equal run-lengths, distinct A044813.
A304442 counts partitions with equal run-sums, ranks A353833.
A164707 lists numbers whose binary form has equal runs of ones, distinct A328592.
A329738 counts compositions with equal run-lengths, ranks A353744.
A329739 counts compositions with distinct run-lengths, ranks A351596, complement A351291.
Cf. A382857 (firsts A382878), A382771 (firsts A382772).

Programs

  • Mathematica
    nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    Select[Range[100],Select[Permutations[nrmptn[#]],SameQ@@Length/@Split[#]&]=={}&]

A384891 Number of permutations of {1..n} with all distinct lengths of maximal runs (increasing by 1).

Original entry on oeis.org

1, 1, 1, 3, 3, 5, 23, 25, 43, 63, 345, 365, 665, 949, 1513, 8175, 9003, 15929, 23399, 36949, 51043, 293715, 314697, 570353, 826817, 1318201, 1810393, 2766099, 14180139, 15600413, 27707879, 40501321, 63981955, 88599903, 134362569, 181491125, 923029217
Offset: 0

Views

Author

Gus Wiseman, Jun 19 2025

Keywords

Examples

			The permutation (1,2,6,7,8,9,3,4,5) has maximal runs ((1,2),(6,7,8,9),(3,4,5)), with lengths (2,4,3), so is counted under a(9).
The a(0) = 1 through a(7) = 25 permutations:
  ()  (1)  (12)  (123)  (1234)  (12345)  (123456)  (1234567)
                 (231)  (2341)  (23451)  (123564)  (1234675)
                 (312)  (4123)  (34512)  (123645)  (1234756)
                                (45123)  (124563)  (1245673)
                                (51234)  (126345)  (1273456)
                                         (145623)  (1456723)
                                         (156234)  (1672345)
                                         (231456)  (2314567)
                                         (234156)  (2345167)
                                         (234561)  (2345671)
                                         (312456)  (3124567)
                                         (345126)  (3456127)
                                         (345612)  (3456712)
                                         (412356)  (4567123)
                                         (451236)  (4567231)
                                         (456231)  (4567312)
                                         (456312)  (5123467)
                                         (561234)  (5612347)
                                         (562341)  (5671234)
                                         (564123)  (6712345)
                                         (612345)  (6723451)
                                         (634512)  (6751234)
                                         (645123)  (7123456)
                                                   (7345612)
                                                   (7561234)
		

Crossrefs

Counting by number of maximal anti-runs gives A010027, for runs A123513.
For subsets instead of permutations we have A384175, complement A384176.
For partitions we have A384884 (anti-runs A384885), strict A384178 (anti-runs A384880).
For equal instead of distinct lengths we have A384892.
For anti-runs instead of runs we have A384907.
A000041 counts integer partitions, strict A000009.
A034839 counts subsets by number of maximal runs, for strict partitions A116674.
A098859 counts Wilf partitions (distinct multiplicities), complement A336866.
A356606 counts strict partitions without a neighborless part, complement A356607.
A384893 counts subsets by number of maximal anti-runs, for partitions A268193, A384905.

Programs

  • Mathematica
    Table[Length[Select[Permutations[Range[n]],UnsameQ@@Length/@Split[#,#2==#1+1&]&]],{n,0,10}]
  • PARI
    lista(n)=my(b(n)=sum(i=0,n-1,(-1)^i*(n-i)!*binomial(n-1,i)), d=floor(sqrt(2*n)), p=prod(i=1,n,1+x*y^i,1+O(y*y^n)*((1-x^(n+1))/(1-x))+O(x*x^d))); Vec(1+sum(i=1,d,i!*b(i)*polcoef(p,i))) \\ Christian Sievers, Jun 22 2025

Formula

a(n) = Sum_{k=1..n} ( T(n,k) * A000255(k-1) ) for n>=1, where T(n,k) is the number of compositions of n into k distinct parts (cf. A072574). - Christian Sievers, Jun 22 2025

Extensions

a(11) and beyond from Christian Sievers, Jun 22 2025

A385817 Irregular triangle read by rows listing the lengths of maximal runs (sequences of consecutive elements increasing by 1) of binary indices, duplicate rows removed.

Original entry on oeis.org

1, 2, 1, 1, 3, 2, 1, 1, 2, 4, 1, 1, 1, 3, 1, 2, 2, 1, 3, 5, 2, 1, 1, 1, 2, 1, 4, 1, 1, 1, 2, 3, 2, 2, 3, 1, 4, 6, 1, 1, 1, 1, 3, 1, 1, 2, 2, 1, 1, 3, 1, 5, 1, 2, 1, 2, 1, 2, 2, 4, 2, 1, 1, 3, 3, 3, 2, 4, 1, 5, 7, 2, 1, 1, 1, 1, 2, 1, 1, 4, 1, 1, 1, 1, 2, 1
Offset: 0

Views

Author

Gus Wiseman, Jul 14 2025

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.
This is the triangle A245563, except all duplicates after the first instance of each composition are removed. It lists all compositions in order of their first appearance as a row of A245563.

Examples

			The binary indices of 53 are {1,3,5,6}, with maximal runs ((1),(3),(5,6)), with lengths (1,1,2). After removing duplicates, this is our row 16.
Triangle begins:
   0: .
   1: 1
   2: 2
   3: 1 1
   4: 3
   5: 2 1
   6: 1 2
   7: 4
   8: 1 1 1
   9: 3 1
  10: 2 2
  11: 1 3
  12: 5
  13: 2 1 1
  14: 1 2 1
  15: 4 1
  16: 1 1 2
  17: 3 2
  18: 2 3
  19: 1 4
  20: 6
  21: 1 1 1 1
		

Crossrefs

In the following references, "before" is short for "before removing duplicate rows".
Positions of singleton rows appear to be A000071 = A000045-1, before A023758.
Positions of firsts appearances appear to be A001629.
Positions of rows of the form (1,1,...) appear to be A055588 = A001906+1.
First term of each row appears to be A083368.
Row sums appear to be A200648, before A000120.
Row lengths after the first row appear to be A200650+1, before A069010 = A037800+1.
Before the removals we had A245563 (except first term), see A245562, A246029, A328592.
For anti-run ranks we have A385816, before A348366, firsts A052499.
Standard composition numbers of rows are A385818, before A385889.
For anti-runs we have A385886, before A384877, firsts A384878.

Programs

  • Mathematica
    DeleteDuplicates[Table[Length/@Split[Join@@Position[Reverse[IntegerDigits[n,2]],1],#2==#1+1&],{n,0,100}]]

A083368 a(n) is the position of the highest one in A003754(n).

Original entry on oeis.org

1, 2, 1, 3, 2, 1, 4, 1, 3, 2, 1, 5, 2, 1, 4, 1, 3, 2, 1, 6, 1, 3, 2, 1, 5, 2, 1, 4, 1, 3, 2, 1, 7, 2, 1, 4, 1, 3, 2, 1, 6, 1, 3, 2, 1, 5, 2, 1, 4, 1, 3, 2, 1, 8, 1, 3, 2, 1, 5, 2, 1, 4, 1, 3, 2, 1, 7, 2, 1, 4, 1, 3, 2, 1, 6, 1, 3, 2, 1, 5, 2, 1, 4, 1, 3, 2, 1, 9, 2, 1, 4, 1, 3, 2, 1, 6, 1, 3, 2, 1, 5, 2
Offset: 1

Views

Author

Gary W. Adamson, Jun 04 2003

Keywords

Comments

Previous name was: A Fibbinary system represents a number as a sum of distinct Fibonacci numbers (instead of distinct powers of two). Using representations without adjacent zeros, a(n) = the highest bit-position which changes going from n-1 to n.
A003754(n), when written in binary, is the representation of n.
Often one uses Fibbinary representations without adjacent ones (the Zeckendorf expansion).
a(A000071(n+3)) = n. - Reinhard Zumkeller, Aug 10 2014
From Gus Wiseman, Jul 24 2025: (Start)
Conjecture: To obtain this sequence, start with A245563 (maximal run lengths of binary indices), then remove empty and duplicate rows (giving A385817), then take the first term of each remaining row. Some variations:
- For sum instead of first term we appear to have A200648.
- For length instead of first term we appear to have A200650+1.
- For last instead of first term we have A385892.
(End)

Examples

			27 is represented 110111, 28 is 111010; the fourth position changes, so a(28)=4.
		

References

  • Jay Kappraff, Beyond Measure: A Guided Tour Through Nature, Myth and Number, World Scientific, 2002, page 460.

Crossrefs

A035612 is the analogous sequence for Zeckendorf representations.
A001511 is the analogous sequence for power-of-two representations.
Appears to be the first element of each row of A385817, see A083368, A200648, A200650, A385818, A385892.
A000120 counts ones in binary expansion.
A245563 gives run lengths of binary indices, see A089309, A090996, A245562, A246029, A328592.
A384877 gives anti-run lengths of binary indices, ranks A385816.

Programs

  • Haskell
    a083368 n = a083368_list !! (n-1)
    a083368_list = concat $ h $ drop 2 a000071_list where
       h (a:fs@(a':_)) = (map (a035612 . (a' -)) [a .. a' - 1]) : h fs
    -- Reinhard Zumkeller, Aug 10 2014

Formula

For n = F(a)-1 to F(a+1)-2, a(n) = A035612(F(a+1)-1-n).
a(n) = a(k)+1 if n = ceiling(phi*k) where phi is the golden ratio; otherwise a(n) = 1. - Tom Edgar, Aug 25 2015

Extensions

Edited by Don Reble, Nov 12 2005
Shorter name from Joerg Arndt, Jul 27 2025

A382772 Set of positions of first appearances in A382771 (permutations of prime indices with distinct run-lengths).

Original entry on oeis.org

1, 6, 12, 96, 360, 1536, 3456, 5184, 5760, 6144, 7776, 13824, 23040, 24576, 55296, 62208, 92160
Offset: 1

Views

Author

Gus Wiseman, Apr 09 2025

Keywords

Examples

			The permutations for n = 12, 96, 360, 1536:
  (1,1,2)  (1,1,1,1,1,2)  (1,1,1,2,2,3)  (1,1,1,1,1,1,1,1,1,2)
  (2,1,1)  (1,1,1,2,1,1)  (1,1,1,3,2,2)  (1,1,1,1,1,1,1,2,1,1)
           (1,1,2,1,1,1)  (2,2,1,1,1,3)  (1,1,1,1,1,1,2,1,1,1)
           (2,1,1,1,1,1)  (2,2,3,1,1,1)  (1,1,1,1,1,2,1,1,1,1)
                          (3,1,1,1,2,2)  (1,1,1,1,2,1,1,1,1,1)
                          (3,2,2,1,1,1)  (1,1,1,2,1,1,1,1,1,1)
                                         (1,1,2,1,1,1,1,1,1,1)
                                         (2,1,1,1,1,1,1,1,1,1)
		

Crossrefs

Positions of first appearances in A382771, by signature A382773.
For equal run-lengths we have A382878, firsts of A382857, zeros A382879.
A044813 lists numbers whose binary expansion has distinct run-lengths, equal A140690.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798.
A098859 counts partitions with distinct multiplicities, ordered A242882.
A239455 counts Look-and-Say partitions, ranks A351294, conjugate A381432.
A328592 lists numbers whose binary form has distinct runs of ones, equal A164707.
A329738 counts compositions with equal run-lengths, ranks A353744.
A329739 counts compositions with distinct run-lengths, ranks A351596.
A351293 counts non-Look-and-Say partitions, ranks A351295, conjugate A381433.

Programs

  • Mathematica
    y=Table[Length[Select[Permutations[Join@@ConstantArray@@@FactorInteger[n]],UnsameQ@@Length/@Split[#]&]],{n,0,100000}];
    fip[y_]:=Select[Range[Length[y]],!MemberQ[Take[y,#-1],y[[#]]]&];
    fip[Rest[y]]

A385818 The number k such that the k-th composition in standard order lists the maximal run lengths of each nonnegative integer's binary indices, with duplicates removed.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 8, 7, 9, 10, 12, 16, 11, 13, 17, 14, 18, 20, 24, 32, 15, 19, 21, 25, 33, 22, 26, 34, 28, 36, 40, 48, 64, 23, 27, 35, 29, 37, 41, 49, 65, 30, 38, 42, 50, 66, 44, 52, 68, 56, 72, 80, 96, 128, 31, 39, 43, 51, 67, 45, 53, 69, 57, 73, 81, 97
Offset: 0

Views

Author

Gus Wiseman, Jul 18 2025

Keywords

Comments

A permutation of the nonnegative integers.
A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The binary indices of 53 are {1,3,5,6}, with maximal runs ((1),(3),(5,6)) with lengths (1,1,2), which is the 14th composition in standard order, so A385889(53) = 14, and after removing duplicate rows a(16) = 14.
		

Crossrefs

For anti-runs instead of runs we appear to have A348366.
See also A385816 (standard compositions of rows of A384877), reverse A209859.
The compositions themselves are listed by A385817.
Before removing duplicates we had A385889.
A245563 lists run lengths of binary indices (ranks A246029), rev A245562, strict A328592.
A384175 counts subsets with all distinct lengths of maximal runs, complement A384176.

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    stcinv[q_]:=Total[2^(Accumulate[Reverse[q]])]/2;
    stcinv/@DeleteDuplicates[Table[Length/@Split[bpe[n],#2==#1+1&],{n,0,100}]]

A165933 Least integer, k, whose value is n in A165413.

Original entry on oeis.org

1, 4, 35, 536, 16775, 1060976, 135007759, 34460631520, 17617985239071, 18027600169142208, 36907002795598798911, 151143401509104346210176, 1238053384151947477501575295, 20283338091738780737237428502272, 664629209970464486086782992577855743
Offset: 1

Views

Author

Robert G. Wilson v, Sep 30 2009

Keywords

Comments

An alternative name: The smallest number whose binary expansion has exactly n distinct run-lengths. - Gus Wiseman, Feb 21 2022
Term a(n) has one 1, followed by n 0's, then two 1's, (n-1) 0's, ..., up to n runs; see Python program. - Michael S. Branicky, Feb 22 2022

Examples

			a(1) in binary is 1, a(2) in binary is 100, a(3) in binary is 100011, a(4) in binary is 1000011000, etc.
From _Gus Wiseman_, Feb 21 2022: (Start)
The terms and their binary expansions begin:
  n              a(n)
  1:               1 =                                             1
  2:               4 =                                           100
  3:              35 =                                        100011
  4:             536 =                                    1000011000
  5:           16775 =                               100000110000111
  6:         1060976 =                         100000011000001110000
  7:       135007759 =                  1000000011000000111000001111
  8:     34460631520 =          100000000110000000111000000111100000
  9:  17617985239071 = 100000000011000000001110000000111100000011111
(End)
		

Crossrefs

A subset of A044813 (distinct run-lengths) and of A175413 (distinct runs).
These are the positions of first appearances in A165413.
The version for runs instead of run-lengths is A350952, firsts of A297770.
A000120 counts binary weight.
A005811 counts runs in binary expansion.
A242882 counts compositions with distinct multiplicities.
A318928 gives runs-resistance of binary expansion.
A351014 counts distinct runs in standard compositions.
Counting words with all distinct run-lengths:
- A032020 = binary expansions, for runs A351018.
- A329739 = compositions, for runs A351013.
- A351017 = binary words, for runs A351016.
- A351292 = patterns, for runs A351200.

Programs

  • Mathematica
    g[n_] := Table[ {Table[1, {i}], Table[0, {n - i + 1}]}, {i, Floor[(n + If[ OddQ@n, 1, 0])/2]}]; f[n_] := FromDigits[ If[ OddQ@n, Flatten@ Most@ Flatten[ g@n, 1], Flatten@ g@n], 2]; Array[f, 14]
    s=Table[Length[Union[Length/@Split[IntegerDigits[n,2]]]],{n,0,1000}]; Table[Position[s,k][[1,1]]-1,{k,Union[s]}] (* Gus Wiseman, Feb 21 2022 *)
  • Python
    def a(n): # returns term by construction
        if n == 1: return 1
        q, r = divmod(n+1, 2)
        s = "".join("1"*i + "0"*(n+1-i) for i in range(1, q+1))
        if r == 0: s = s.rstrip("0")
        return int(s, 2)
    print([a(n) for n in range(1, 16)]) # Michael S. Branicky, Feb 22 2022

Extensions

a(15) and beyond from Michael S. Branicky, Feb 22 2022

A351205 Numbers whose binary expansion does not have all distinct runs.

Original entry on oeis.org

5, 9, 10, 17, 18, 20, 21, 22, 26, 27, 33, 34, 36, 37, 40, 41, 42, 43, 45, 46, 51, 53, 54, 58, 65, 66, 68, 69, 72, 73, 74, 75, 76, 77, 80, 81, 82, 83, 84, 85, 86, 87, 89, 90, 91, 93, 94, 99, 100, 101, 102, 105, 106, 107, 108, 109, 110, 117, 118, 119, 122, 129
Offset: 1

Views

Author

Gus Wiseman, Feb 07 2022

Keywords

Examples

			The terms together with their binary expansions begin:
      5:     101     41:  101001     74: 1001010
      9:    1001     42:  101010     75: 1001011
     10:    1010     43:  101011     76: 1001100
     17:   10001     45:  101101     77: 1001101
     18:   10010     46:  101110     80: 1010000
     20:   10100     51:  110011     81: 1010001
     21:   10101     53:  110101     82: 1010010
     22:   10110     54:  110110     83: 1010011
     26:   11010     58:  111010     84: 1010100
     27:   11011     65: 1000001     85: 1010101
     33:  100001     66: 1000010     86: 1010110
     34:  100010     68: 1000100     87: 1010111
     36:  100100     69: 1000101     89: 1011001
     37:  100101     72: 1001000     90: 1011010
     40:  101000     73: 1001001     91: 1011011
For example, 77 has binary expansion 1001101, with runs 1, 00, 11, 0, 1, which are not all distinct, so 77 is in the sequence.
		

Crossrefs

Runs in binary expansion are counted by A005811, distinct A297770.
The complement is A175413, for run-lengths A044813.
The version for standard compositions is A351291, complement A351290.
A000120 counts binary weight.
A011782 counts integer compositions.
A242882 counts compositions with distinct multiplicities.
A318928 gives runs-resistance of binary expansion.
A325545 counts compositions with distinct differences.
A333489 ranks anti-runs, complement A348612, counted by A003242.
A334028 counts distinct parts in standard compositions.
A351014 counts distinct runs in standard compositions.
Counting words with all distinct runs:
- A351013 = compositions, for run-lengths A329739.
- A351016 = binary words, for run-lengths A351017.
- A351018 = binary expansions, for run-lengths A032020.
- A351200 = patterns, for run-lengths A351292.
- A351202 = permutations of prime factors.

Programs

  • Maple
    q:= proc(n) uses ListTools; (l-> is(nops(l)<>add(
          nops(i), i={Split(`=`, l, 1)}) +add(
          nops(i), i={Split(`=`, l, 0)})))(Bits[Split](n))
        end:
    select(q, [$1..200])[];  # Alois P. Heinz, Mar 14 2022
  • Mathematica
    Select[Range[0,100],!UnsameQ@@Split[IntegerDigits[#,2]]&]
  • Python
    from itertools import groupby, product
    def ok(n):
        runs = [(k, len(list(g))) for k, g in groupby(bin(n)[2:])]
        return len(runs) > len(set(runs))
    print([k for k in range(130) if ok(k)]) # Michael S. Branicky, Feb 09 2022

A382774 Number of ways to permute the prime indices of n! so that the run-lengths are all different.

Original entry on oeis.org

1, 1, 1, 0, 2, 0, 6, 0, 0, 0, 96, 0
Offset: 0

Views

Author

Gus Wiseman, Apr 09 2025

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798, sum A056239.

Examples

			The prime indices of 24 are {1,1,1,2}, with permutations (1,1,1,2) and (2,1,1,1), so a(4) = 2.
		

Crossrefs

For anti-run permutations we have A335407, see also A335125, A382858.
This is the restriction of A382771 to the factorials A000142, equal A382857.
A022559 counts prime indices of n!, sum A081401.
A044813 lists numbers whose binary expansion has distinct run-lengths, equal A140690.
A056239 adds up prime indices, row sums of A112798.
A098859 counts partitions with distinct multiplicities, ordered A242882.
A239455 counts Look-and-Say partitions, ranks A351294, conjugate A381432.
A328592 lists numbers whose binary form has distinct runs of ones, equal A164707.
A329738 counts compositions with equal run-lengths, ranks A353744.
A329739 counts compositions with distinct run-lengths, ranks A351596.
A351293 counts non-Look-and-Say partitions, ranks A351295, conjugate A381433.

Programs

  • Mathematica
    Table[Length[Select[Permutations[prix[n!]],UnsameQ@@Length/@Split[#]&]],{n,0,6}]

Formula

a(n) = A382771(n!).
Previous Showing 31-40 of 45 results. Next