cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 34 results. Next

A330103 Numbers whose prime-indices do not have weakly increasing numbers of prime factors, counted with multiplicity.

Original entry on oeis.org

77, 119, 154, 217, 221, 231, 238, 287, 308, 357, 385, 403, 413, 434, 437, 442, 462, 469, 476, 533, 539, 551, 574, 581, 589, 595, 616, 651, 663, 693, 713, 714, 763, 767, 770, 779, 806, 817, 826, 833, 847, 861, 868, 871, 874, 884, 889, 893, 899, 924, 938
Offset: 1

Views

Author

Gus Wiseman, Dec 09 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The sequence of terms together with their corresponding multisets of multisets begins:
   77: {{1,1},{3}}
  119: {{1,1},{4}}
  154: {{},{1,1},{3}}
  217: {{1,1},{5}}
  221: {{1,2},{4}}
  231: {{1},{1,1},{3}}
  238: {{},{1,1},{4}}
  287: {{1,1},{6}}
  308: {{},{},{1,1},{3}}
  357: {{1},{1,1},{4}}
  385: {{2},{1,1},{3}}
For example, 385 has prime indices {3,4,5} with numbers of prime factors (1,2,1), which is not weakly increasing, so 385 is in the sequence.
		

Crossrefs

The version where prime factors are counted without multiplicity is A330281.

Programs

  • Mathematica
    Select[Range[1000],!OrderedQ[PrimeOmega/@PrimePi/@First/@FactorInteger[#]]&]

Extensions

Term 667 deleted by Gus Wiseman, Feb 07 2021

A330223 Number of non-isomorphic achiral multiset partitions of weight n.

Original entry on oeis.org

1, 1, 4, 5, 12, 9, 30, 17, 52, 44, 94, 58, 211, 103, 302, 242, 552, 299, 1024, 492, 1592, 1007, 2523, 1257, 4636, 2000, 6661, 3705, 10823, 4567, 18147, 6844, 26606, 12272, 40766, 15056, 67060, 21639, 95884, 37357, 146781, 44585, 230098, 63263, 330889, 106619, 491182, 124756
Offset: 0

Views

Author

Gus Wiseman, Dec 07 2019

Keywords

Comments

A multiset partition is a finite multiset of finite nonempty multisets. It is achiral if it is not changed by any permutation of the vertices.

Examples

			Non-isomorphic representatives of the a(1) = 1 through a(5) = 9 multiset partitions:
  {1}  {11}    {111}      {1111}        {11111}
       {12}    {123}      {1122}        {12345}
       {1}{1}  {1}{11}    {1234}        {1}{1111}
       {1}{2}  {1}{1}{1}  {1}{111}      {11}{111}
               {1}{2}{3}  {11}{11}      {1}{1}{111}
                          {11}{22}      {1}{11}{11}
                          {12}{12}      {1}{1}{1}{11}
                          {1}{1}{11}    {1}{1}{1}{1}{1}
                          {1}{2}{12}    {1}{2}{3}{4}{5}
                          {1}{1}{1}{1}
                          {1}{1}{2}{2}
                          {1}{2}{3}{4}
Non-isomorphic representatives of the a(6) = 30 multiset partitions:
  {111111}  {1}{11111}  {1}{1}{1111}  {1}{1}{1}{111}  {1}{1}{1}{1}{11}
  {111222}  {11}{1111}  {1}{11}{111}  {1}{1}{11}{11}  {1}{1}{2}{2}{12}
  {112233}  {111}{111}  {11}{11}{11}  {1}{2}{11}{22}
  {123456}  {111}{222}  {11}{12}{22}  {1}{2}{12}{12}
            {112}{122}  {11}{22}{33}  {1}{2}{3}{123}    {1}{1}{1}{1}{1}{1}
            {12}{1122}  {1}{2}{1122}                    {1}{1}{1}{2}{2}{2}
            {123}{123}  {12}{12}{12}                    {1}{1}{2}{2}{3}{3}
                        {12}{13}{23}                    {1}{2}{3}{4}{5}{6}
		

Crossrefs

Planted achiral trees are A003238.
Achiral set-systems are counted by A083323.
BII-numbers of achiral set-systems are A330217.
Achiral integer partitions are counted by A330224.
Non-isomorphic fully chiral multiset partitions are A330227.
MM-numbers of achiral multisets of multisets are A330232.
Achiral factorizations are A330234.

Extensions

a(10)-a(11) and a(13) from Erich Friedman, Nov 20 2024
a(12) from Bert Dobbelaere, Apr 29 2025
More terms from Bert Dobbelaere, May 02 2025

A330061 MM-number of the VDD-normalization of the multiset of multisets with MM-number n.

Original entry on oeis.org

1, 2, 3, 4, 3, 6, 7, 8, 9, 6, 3, 12, 13, 14, 15, 16, 3, 18, 19, 12, 21, 6, 7, 24, 9, 26, 27, 28, 13, 30, 3, 32, 15, 6, 35, 36, 37, 38, 39, 24, 3, 42, 13, 12, 45, 14, 13, 48, 49, 18, 15, 52, 53, 54, 15, 56, 57, 26, 3, 60, 37, 6, 63, 64, 39, 30, 3, 12, 35, 70
Offset: 1

Views

Author

Gus Wiseman, Dec 03 2019

Keywords

Comments

We define the VDD (vertex-degrees decreasing) normalization of a multiset of multisets to be obtained by first normalizing so that the vertices cover an initial interval of positive integers, then applying all permutations to the vertex set, then selecting only the representatives whose vertex-degrees are weakly decreasing, and finally taking the least of these representatives, where the ordering of multisets is first by length and then lexicographically.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset of multisets with MM-number n is formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the multiset of multisets with MM-number 78 is {{},{1},{1,2}}.
For example, 15301 is the MM-number of {{3},{1,2},{1,1,4}}, which has the following normalizations together with their MM-numbers:
Brute-force: 43287: {{1},{2,3},{2,2,4}}
Lexicographic: 43143: {{1},{2,4},{2,2,3}}
VDD: 15515: {{2},{1,3},{1,1,4}}
MM: 15265: {{2},{1,4},{1,1,3}}

Crossrefs

This sequence is idempotent and its image/fixed points are A330060.
Non-isomorphic multiset partitions are A007716.
MM-weight is A302242.
Other fixed points:
- Brute-force: A330104 (multisets of multisets), A330107 (multiset partitions), A330099 (set-systems).
- Lexicographic: A330120 (multisets of multisets), A330121 (multiset partitions), A330110 (set-systems).
- VDD: A330060 (multisets of multisets), A330097 (multiset partitions), A330100 (set-systems).
- MM: A330108 (multisets of multisets), A330122 (multiset partitions), A330123 (set-systems).
- BII: A330109 (set-systems).

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    sysnorm[m_]:=If[Union@@m!={}&&Union@@m!=Range[Max@@Flatten[m]],sysnorm[m/.Rule@@@Table[{(Union@@m)[[i]],i},{i,Length[Union@@m]}]],First[Sort[sysnorm[m,1]]]];
    sysnorm[m_,aft_]:=If[Length[Union@@m]<=aft,{m},With[{mx=Table[Count[m,i,{2}],{i,Select[Union@@m,#>=aft&]}]},Union@@(sysnorm[#,aft+1]&/@Union[Table[Map[Sort,m/.{par+aft-1->aft,aft->par+aft-1},{0,1}],{par,First/@Position[mx,Max[mx]]}]])]];
    Table[Map[Times@@Prime/@#&,sysnorm[primeMS/@primeMS[n]],{0,1}],{n,100}]

A330232 MM-numbers of achiral multisets of multisets.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 38, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 62, 63, 64, 66, 67, 68, 72, 73, 76, 79, 80
Offset: 1

Views

Author

Gus Wiseman, Dec 08 2019

Keywords

Comments

First differs from A322554 in lacking 141.
A multiset of multisets is achiral if it is not changed by any permutation of the vertices.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset of multisets with MM-number n is formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the multiset of multisets with MM-number 78 is {{},{1},{1,2}}.

Examples

			The sequence of non-achiral multisets of multisets (the complement of this sequence) together with their MM-numbers begins:
  35: {{2},{1,1}}
  37: {{1,1,2}}
  39: {{1},{1,2}}
  45: {{1},{1},{2}}
  61: {{1,2,2}}
  65: {{2},{1,2}}
  69: {{1},{2,2}}
  70: {{},{2},{1,1}}
  71: {{1,1,3}}
  74: {{},{1,1,2}}
  75: {{1},{2},{2}}
  77: {{1,1},{3}}
  78: {{},{1},{1,2}}
  87: {{1},{1,3}}
  89: {{1,1,1,2}}
  90: {{},{1},{1},{2}}
		

Crossrefs

The fully-chiral version is A330236.
Achiral set-systems are counted by A083323.
MG-numbers of planted achiral trees are A214577.
MM-weight is A302242.
MM-numbers of costrict (or T_0) multisets of multisets are A322847.
BII-numbers of achiral set-systems are A330217.
Non-isomorphic achiral multiset partitions are A330223.
Achiral integer partitions are counted by A330224.
Achiral factorizations are A330234.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    graprms[m_]:=Union[Table[Sort[Sort/@(m/.Apply[Rule,Table[{p[[i]],i},{i,Length[p]}],{1}])],{p,Permutations[Union@@m]}]]
    Select[Range[100],Length[graprms[primeMS/@primeMS[#]]]==1&]

A330236 MM-numbers of fully chiral multisets of multisets.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 42, 44, 45, 46, 48, 49, 50, 53, 54, 56, 57, 59, 61, 62, 63, 64, 65, 67, 68, 69, 70, 71, 72, 74, 75, 76, 77, 78, 80, 81, 82, 83
Offset: 1

Views

Author

Gus Wiseman, Dec 10 2019

Keywords

Comments

A multiset of multisets is fully chiral every permutation of the vertices gives a different representative.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset of multisets with MM-number n is formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the multiset of multisets with MM-number 78 is {{},{1},{1,2}}.

Examples

			The sequence of all fully chiral multisets of multisets together with their MM-numbers begins:
   1:             18: {}{1}{1}      37: {112}          57: {1}{111}
   2: {}          19: {111}         38: {}{111}        59: {7}
   3: {1}         20: {}{}{2}       39: {1}{12}        61: {122}
   4: {}{}        21: {1}{11}       40: {}{}{}{2}      62: {}{5}
   5: {2}         22: {}{3}         41: {6}            63: {1}{1}{11}
   6: {}{1}       23: {22}          42: {}{1}{11}      64: {}{}{}{}{}{}
   7: {11}        24: {}{}{}{1}     44: {}{}{3}        65: {2}{12}
   8: {}{}{}      25: {2}{2}        45: {1}{1}{2}      67: {8}
   9: {1}{1}      27: {1}{1}{1}     46: {}{22}         68: {}{}{4}
  10: {}{2}       28: {}{}{11}      48: {}{}{}{}{1}    69: {1}{22}
  11: {3}         31: {5}           49: {11}{11}       70: {}{2}{11}
  12: {}{}{1}     32: {}{}{}{}{}    50: {}{2}{2}       71: {113}
  14: {}{11}      34: {}{4}         53: {1111}         72: {}{}{}{1}{1}
  16: {}{}{}{}    35: {2}{11}       54: {}{1}{1}{1}    74: {}{112}
  17: {4}         36: {}{}{1}{1}    56: {}{}{}{11}     75: {1}{2}{2}
The complement starts: {13, 15, 26, 29, 30, 33, 43, 47, 51, 52, 55, 58, 60, 66, 73, 79, 85, 86, 93, 94}.
		

Crossrefs

Costrict (or T_0) factorizations are A316978.
BII-numbers of fully chiral set-systems are A330226.
Non-isomorphic fully chiral multiset partitions are A330227.
Full chiral partitions are A330228.
Fully chiral covering set-systems are A330229.
Fully chiral factorizations are A330235.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    graprms[m_]:=Union[Table[Sort[Sort/@(m/.Rule@@@Table[{p[[i]],i},{i,Length[p]}])],{p,Permutations[Union@@m]}]];
    Select[Range[100],Length[graprms[primeMS/@primeMS[#]]]==Length[Union@@primeMS/@primeMS[#]]!&]

Formula

Numbers n such that A330098(n) = A303975(n)!.

A330105 MM-number of the brute-force normalization of the multiset of multisets with MM-number n.

Original entry on oeis.org

1, 2, 3, 4, 3, 6, 7, 8, 9, 6, 3, 12, 13, 14, 15, 16, 3, 18, 19, 12, 21, 6, 7, 24, 9, 26, 27, 28, 13, 30, 3, 32, 15, 6, 69, 36, 37, 38, 39, 24, 3, 42, 13, 12, 45, 14, 13, 48, 49, 18, 15, 52, 53, 54, 15, 56, 57, 26, 3, 60, 37, 6, 63, 64, 39, 30, 3, 12, 69, 138
Offset: 1

Views

Author

Gus Wiseman, Dec 02 2019

Keywords

Comments

We define the brute-force normalization of a multiset of multisets to be obtained by first normalizing so that the vertices cover an initial interval of positive integers, then applying all permutations to the vertex set, and finally taking the least representative, where the ordering of multisets is first by length and then lexicographically.
For example, 15301 is the MM-number of {{3},{1,2},{1,1,4}}, which has the following normalizations together with their MM-numbers:
Brute-force: 43287: {{1},{2,3},{2,2,4}}
Lexicographic: 43143: {{1},{2,4},{2,2,3}}
VDD: 15515: {{2},{1,3},{1,1,4}}
MM: 15265: {{2},{1,4},{1,1,3}}
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset of multisets with MM-number n is formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the multiset of multisets with MM-number 78 is {{},{1},{1,2}}.

Crossrefs

This sequence is idempotent and its image/fixed points are A330104.
Non-isomorphic multiset partitions are A007716.
Other normalizations: A330061 (VDD MM), A330101 (brute-force BII), A330102 (VDD BII), A330105 (brute-force MM).
Other fixed points:
- Brute-force: A330104 (multisets of multisets), A330107 (multiset partitions), A330099 (set-systems).
- Lexicographic: A330120 (multisets of multisets), A330121 (multiset partitions), A330110 (set-systems).
- VDD: A330060 (multisets of multisets), A330097 (multiset partitions), A330100 (set-systems).
- MM: A330108 (multisets of multisets), A330122 (multiset partitions), A330123 (set-systems).
- BII: A330109 (set-systems).

Programs

  • Mathematica
    brute[m_]:=If[Union@@m!={}&&Union@@m!=Range[Max@@Flatten[m]],brute[m/.Rule@@@Table[{(Union@@m)[[i]],i},{i,Length[Union@@m]}]],First[Sort[brute[m,1]]]];
    brute[m_,1]:=Table[Sort[Sort/@(m/.Rule@@@Table[{i,p[[i]]},{i,Length[p]}])],{p,Permutations[Union@@m]}];
    Table[Map[Times@@Prime/@#&,brute[primeMS/@primeMS[n]],{0,1}],{n,100}]

A330230 Least MM-number of a multiset of multisets with n distinct representatives obtainable by permuting the vertices.

Original entry on oeis.org

1, 35, 141, 1713, 28011, 355
Offset: 1

Views

Author

Gus Wiseman, Dec 09 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset of multisets with MM-number n is formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the multiset of multisets with MM-number 78 is {{},{1},{1,2}}.

Examples

			The sequence of terms together with their corresponding multisets of multisets begins:
      1: {}
     35: {{2},{1,1}}
    141: {{1},{2,3}}
   1713: {{1},{2,3,4}}
  28011: {{1},{2,3,4,5}}
    355: {{2},{1,1,3}}
		

Crossrefs

The BII-number version is A330218.
Positions of first appearances in A330098.
The sorted version is A330233.
MM-numbers of achiral multisets of multisets are A330232.
MM-numbers of fully-chiral multisets of multisets are A330236.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    graprms[m_]:=Union[Table[Sort[Sort/@(m/.Apply[Rule,Table[{p[[i]],i},{i,Length[p]}],{1}])],{p,Permutations[Union@@m]}]];
    dv=Table[Length[graprms[primeMS/@primeMS[n]]],{n,1000}];
    Table[Position[dv,i][[1,1]],{i,First[Split[Union[dv],#1+1==#2&]]}]

A330231 Number of distinct set-systems that can be obtained by permuting the vertices of the set-system with BII-number n.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 3, 6, 6, 3, 1, 2, 3, 6, 3, 3, 6, 6, 2, 1, 6, 3, 6, 6, 3, 3, 1, 3, 2, 6, 3, 6, 3, 6, 2, 6, 1, 3, 6, 3, 6, 3, 3, 6, 6, 3, 1, 3, 3, 3, 3, 6, 6, 3, 3, 3, 3, 1, 1, 3, 3, 3, 3, 6, 6, 3, 3, 3, 3, 1, 3, 6, 6, 3, 3, 6, 3, 6, 3, 3, 6
Offset: 0

Views

Author

Gus Wiseman, Dec 09 2019

Keywords

Comments

A set-system is a finite set of finite nonempty sets.
A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793. We define the set-system with BII-number n to be obtained by taking the binary indices of each binary index of n. Every set-system has a different BII-number. For example, 18 has reversed binary expansion (0,1,0,0,1), and since the binary indices of 2 and 5 are {2} and {1,3} respectively, the BII-number of {{2},{1,3}} is 18. Elements of a set-system are sometimes called edges.

Examples

			30 is the MM-number of {{2},{3},{1,2},{1,3}}, with vertex permutations
  {{1},{2},{1,3},{2,3}}
  {{1},{3},{1,2},{2,3}}
  {{2},{3},{1,2},{1,3}}
so a(30) = 3.
		

Crossrefs

Positions of 1's are A330217.
Positions of first appearances are A330218.
The version for MM-numbers is A330098.
Achiral set-systems are counted by A083323.
BII-numbers of fully chiral set-systems are A330226.

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    graprms[m_]:=Union[Table[Sort[Sort/@(m/.Rule@@@Table[{p[[i]],i},{i,Length[p]}])],{p,Permutations[Union@@m]}]];
    Table[Length[graprms[bpe/@bpe[n]]],{n,0,100}]

Formula

a(n) is a divisor of A326702(n)!.

A330228 Number of fully chiral integer partitions of n.

Original entry on oeis.org

1, 1, 2, 3, 5, 6, 9, 12, 18, 25, 33, 45, 61, 80, 106, 140, 176, 232, 293, 381, 476, 615, 764, 975, 1191, 1511, 1849, 2322, 2812, 3517, 4231, 5240, 6297, 7736, 9260, 11315, 13468, 16378, 19485, 23531, 27851, 33525, 39585, 47389, 55844, 66517, 78169, 92810
Offset: 0

Views

Author

Gus Wiseman, Dec 08 2019

Keywords

Comments

A multiset partition is fully chiral if every permutation of the vertices gives a different representative. An integer partition is fully chiral if taking the multiset of prime indices of each part gives a fully chiral multiset of multisets.

Examples

			The a(1) = 1 through a(7) = 12 partitions:
  (1)  (2)   (3)    (4)     (5)      (33)      (7)
       (11)  (21)   (22)    (41)     (42)      (43)
             (111)  (31)    (221)    (51)      (322)
                    (211)   (311)    (222)     (331)
                    (1111)  (2111)   (411)     (421)
                            (11111)  (2211)    (511)
                                     (3111)    (2221)
                                     (21111)   (4111)
                                     (111111)  (22111)
                                               (31111)
                                               (211111)
                                               (1111111)
		

Crossrefs

The Heinz numbers of these partitions are given by A330236.
Costrict (or T_0) partitions are A319564.
Achiral partitions are A330224.
BII-numbers of fully chiral set-systems are A330226.
Non-isomorphic, fully chiral multiset partitions are A330227.
Fully chiral covering set-systems are A330229.
Fully chiral factorizations are A330235.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    graprms[m_]:=Union[Table[Sort[Sort/@(m/.Rule@@@Table[{p[[i]],i},{i,Length[p]}])],{p,Permutations[Union@@m]}]];
    Table[Length[Select[IntegerPartitions[n],Length[graprms[primeMS/@#]]==Length[Union@@primeMS/@#]!&]],{n,0,15}]

A330233 Least MM-numbers of multisets of multisets with a given number of distinct representatives (obtainable by vertex-permutations).

Original entry on oeis.org

1, 35, 141, 1713, 28011, 355, 34567, 4045, 54849, 64615, 15265, 95363, 126841
Offset: 1

Views

Author

Gus Wiseman, Dec 09 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset of multisets with MM-number n is formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the multiset of multisets with MM-number 78 is {{},{1},{1,2}}.

Examples

			The sequence of terms together with their corresponding multisets of multisets begins:
       1: {}
      35: {{2},{1,1}}
     141: {{1},{2,3}}
     355: {{2},{1,1,3}}
    1713: {{1},{2,3,4}}
    4045: {{2},{1,1,3,4}}
   15265: {{2},{1,4},{1,1,3}}
   28011: {{1},{2,3,4,5}}
   34567: {{1,2},{3,4,5}}
   54849: {{1},{2,3},{4,5}}
   64615: {{2},{1,1,3,4,5}}
   95363: {{2,3},{1,1,4,5}}
  126841: {{3},{1,2},{1,4,5}}
		

Crossrefs

Sorted positions of first appearances in A330098.
The unsorted version is A330230.
The BII-number version is A330218.
MM-numbers of achiral multisets of multisets are A330232.
MM-numbers of fully-chiral multisets of multisets are A330236.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    graprms[m_]:=Union[Table[Sort[Sort/@(m/.Apply[Rule,Table[{p[[i]],i},{i,Length[p]}],{1}])],{p,Permutations[Union@@m]}]];
    dv=Table[Length[graprms[primeMS/@primeMS[n]]],{n,1000}];
    Table[Position[dv,i][[1,1]],{i,First/@Gather[dv]}]
Previous Showing 11-20 of 34 results. Next