cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A330224 Number of achiral integer partitions of n.

Original entry on oeis.org

1, 1, 2, 3, 5, 7, 11, 13, 18, 21, 30, 32, 43, 46, 57, 64, 79, 83, 103, 107, 130, 141, 162, 171, 205, 214, 245, 258, 297, 307, 357, 373, 423, 441, 493, 513, 591, 607, 674, 702, 790, 817, 917, 938, 1040, 1078, 1186, 1216, 1362, 1395, 1534, 1580, 1738, 1779, 1956
Offset: 0

Views

Author

Gus Wiseman, Dec 08 2019

Keywords

Comments

A multiset of multisets is achiral if it is not changed by any permutation of the vertices. An integer partition is achiral if taking the multiset of prime indices of each part gives an achiral multiset of multisets.

Examples

			The a(1) = 1 through a(7) = 13 partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)
       (11)  (21)   (22)    (32)     (33)      (52)
             (111)  (31)    (41)     (42)      (61)
                    (211)   (221)    (51)      (331)
                    (1111)  (311)    (222)     (421)
                            (2111)   (321)     (511)
                            (11111)  (411)     (2221)
                                     (2211)    (3211)
                                     (3111)    (4111)
                                     (21111)   (22111)
                                     (111111)  (31111)
                                               (211111)
                                               (1111111)
		

Crossrefs

The fully-chiral version is A330228.
The Heinz numbers of these partitions are given by A330232.
Achiral set-systems are counted by A083323.
BII-numbers of achiral set-systems are A330217.
Non-isomorphic achiral multiset partitions are A330223.
Achiral factorizations are A330234.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    graprms[m_]:=Union[Table[Sort[Sort/@(m/.Rule@@@Table[{p[[i]],i},{i,Length[p]}])],{p,Permutations[Union@@m]}]];
    Table[Length[Select[IntegerPartitions[n],Length[graprms[primeMS/@#]]==1&]],{n,0,30}]

Extensions

More terms from Jinyuan Wang, Jun 26 2020

A330282 Number of fully chiral set-systems on n vertices.

Original entry on oeis.org

1, 2, 5, 52, 21521
Offset: 0

Views

Author

Gus Wiseman, Dec 10 2019

Keywords

Comments

A set-system is a finite set of finite nonempty sets. It is fully chiral if every permutation of the covered vertices gives a different representative.

Examples

			The a(0) = 1 through a(2) = 5 set-systems:
  {}  {}     {}
      {{1}}  {{1}}
             {{2}}
             {{1},{1,2}}
             {{2},{1,2}}
		

Crossrefs

Costrict (or T_0) set-systems are A326940.
The covering case is A330229.
The unlabeled version is A330294, with covering case A330295.
Achiral set-systems are A083323.
BII-numbers of fully chiral set-systems are A330226.
Non-isomorphic fully chiral multiset partitions are A330227.
Fully chiral partitions are A330228.
Fully chiral factorizations are A330235.
MM-numbers of fully chiral multisets of multisets are A330236.

Programs

  • Mathematica
    graprms[m_]:=Union[Table[Sort[Sort/@(m/.Rule@@@Table[{p[[i]],i},{i,Length[p]}])],{p,Permutations[Union@@m]}]];
    Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],Length[graprms[#]]==Length[Union@@#]!&]],{n,0,3}]

Formula

Binomial transform of A330229.

A330294 Number of non-isomorphic fully chiral set-systems on n vertices.

Original entry on oeis.org

1, 2, 3, 10, 899
Offset: 0

Views

Author

Gus Wiseman, Dec 10 2019

Keywords

Comments

A set-system is a finite set of finite nonempty sets. It is fully chiral if every permutation of the covered vertices gives a different representative.

Examples

			Non-isomorphic representatives of the a(0) = 1 through a(3) = 10 set-systems:
  0  0    0        0
     {1}  {1}      {1}
          {2}{12}  {2}{12}
                   {1}{3}{23}
                   {2}{13}{23}
                   {3}{23}{123}
                   {2}{3}{13}{23}
                   {1}{3}{23}{123}
                   {2}{13}{23}{123}
                   {2}{3}{13}{23}{123}
		

Crossrefs

The labeled version is A330282.
Partial sums of A330295 (the covering case).
Unlabeled costrict (or T_0) set-systems are A326946.
BII-numbers of fully chiral set-systems are A330226.
Non-isomorphic fully chiral multiset partitions are A330227.
Fully chiral partitions are A330228.
Fully chiral factorizations are A330235.
MM-numbers of fully chiral multisets of multisets are A330236.

A330295 Number of non-isomorphic fully chiral set-systems covering n vertices.

Original entry on oeis.org

1, 1, 1, 7, 889
Offset: 0

Views

Author

Gus Wiseman, Dec 10 2019

Keywords

Comments

A set-system is a finite set of finite nonempty sets. It is fully chiral if every permutation of the covered vertices gives a different representative.

Examples

			Non-isomorphic representatives of the a(0) = 1 through a(3) = 7 set-systems:
  0  {1}  {1}{12}  {1}{2}{13}
                   {1}{12}{23}
                   {1}{12}{123}
                   {1}{2}{12}{13}
                   {1}{2}{13}{123}
                   {1}{12}{23}{123}
                   {1}{2}{12}{13}{123}
		

Crossrefs

The labeled version is A330229.
First differences of A330294 (the non-covering case).
Unlabeled costrict (or T_0) set-systems are A326946.
BII-numbers of fully chiral set-systems are A330226.
Non-isomorphic fully chiral multiset partitions are A330227.
Fully chiral partitions are A330228.
Fully chiral factorizations are A330235.
MM-numbers of fully chiral multisets of multisets are A330236.
Previous Showing 11-14 of 14 results.