cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-24 of 24 results.

A238744 Irregular table read by rows: T (n, k) gives the number of primes p such that p^k divides n; table omits all zero values.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 2, 2, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 2, 2, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 3, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 1, 2, 2, 2, 1, 1, 1, 3, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 2, 1, 1, 2, 1, 1, 2
Offset: 2

Views

Author

Matthew Vandermast, Apr 28 2014

Keywords

Comments

If the prime signature of n (nonincreasing version) is viewed as a partition, row n gives the conjugate partition.

Examples

			24 = 2^3*3 is divisible by two prime numbers (2 and 3), one square of a prime (4 = 2^2), and one cube of a prime (8 = 2^3); therefore, row 24 of the table is {2,1,1}.
From _Gus Wiseman_, Mar 31 2022: (Start)
Rows begin:
     1: ()        16: (1,1,1,1)    31: (1)
     2: (1)       17: (1)          32: (1,1,1,1,1)
     3: (1)       18: (2,1)        33: (2)
     4: (1,1)     19: (1)          34: (2)
     5: (1)       20: (2,1)        35: (2)
     6: (2)       21: (2)          36: (2,2)
     7: (1)       22: (2)          37: (1)
     8: (1,1,1)   23: (1)          38: (2)
     9: (1,1)     24: (2,1,1)      39: (2)
    10: (2)       25: (1,1)        40: (2,1,1)
    11: (1)       26: (2)          41: (1)
    12: (2,1)     27: (1,1,1)      42: (3)
    13: (1)       28: (2,1)        43: (1)
    14: (2)       29: (1)          44: (2,1)
    15: (2)       30: (3)          45: (2,1)
(End)
		

Crossrefs

Row lengths are A051903(n); row sums are A001222(n).
Cf. A217171.
These partitions are ranked by A238745.
For prime indices A296150 instead of exponents we get A321649, rev A321650.
A000700 counts self-conjugate partitions, ranked by A088902.
A003963 gives product of prime indices, conjugate A329382.
A008480 gives number of permutations of prime indices, conjugate A321648.
A056239 adds up prime indices, row sums of A112798.
A124010 gives prime signature, sorted A118914, length A001221.
A352486-A352490 are sets related to the fixed points of A122111.

Programs

  • Mathematica
    Table[Length/@Table[Select[Last/@FactorInteger[n],#>=k&],{k,Max@@Last/@FactorInteger[n]}],{n,2,100}] (* Gus Wiseman, Mar 31 2022 *)

Formula

Row n is identical to row A124859(n) of table A212171.

A351983 Number of integer compositions of n with exactly one part above the diagonal.

Original entry on oeis.org

0, 0, 1, 2, 5, 9, 18, 35, 67, 131, 257, 505, 996, 1973, 3915, 7781, 15486, 30855, 61527, 122764, 245069, 489412, 977673, 1953515, 3904108, 7803545, 15599618, 31187269, 62355347, 124679883, 249310255, 498540890, 996953659, 1993701032, 3987069747, 7973603891
Offset: 0

Views

Author

Gus Wiseman, Apr 02 2022

Keywords

Examples

			The a(2) = 1 through a(6) = 18 compositions:
  (2)  (3)   (4)    (5)     (6)
       (21)  (13)   (14)    (15)
             (22)   (32)    (42)
             (31)   (41)    (51)
             (211)  (131)   (114)
                    (212)   (132)
                    (221)   (141)
                    (311)   (213)
                    (2111)  (222)
                            (312)
                            (321)
                            (411)
                            (1311)
                            (2112)
                            (2121)
                            (2211)
                            (3111)
                            (21111)
		

Crossrefs

The version for permutations is A000295, weak A057427.
The version for partitions is A002620, weak A001477.
The weak version is A177510.
The version for fixed points is A240736, nonfixed A352520.
This is column k = 1 of A352524; column k = 0 is A008930.
A238349 counts compositions by fixed points, first column A238351.
A352521 counts compositions by strong nonexcedances, first column A219282.
A352522 counts compositions by weak nonexcedances, first column A238874.
A352523 counts compositions by nonfixed points, first column A010054.
A352524 counts compositions by strong excedances, first column A008930.
A352525 counts compositions by weak excedances, first column A177510.

Programs

  • Mathematica
    pless[y_]:=Length[Select[Range[Length[y]],#
    				
  • PARI
    S(v,u,c=0)={vector(#v, k, c + sum(i=1, k-1, v[k-i]*u[i]))}
    seq(n)={my(v=vector(1+n), s=0); v[1]=1; for(i=1, n, v=S(v, vector(n, j, if(j>i,'x,1)), O(x^2)); s+=apply(p->polcoef(p,1), v)); s} \\ Andrew Howroyd, Jan 02 2023

Extensions

Terms a(21) and beyond from Andrew Howroyd, Jan 02 2023

A331262 a(n) is the number of balanced-non-self-conjugate partitions of n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 2, 0, 2, 2, 4, 4, 8, 8, 12, 14, 20, 24, 34, 38, 52, 62, 80, 94, 122, 144, 182, 216, 268, 318, 394, 462, 566, 670, 810, 954, 1152, 1352, 1620, 1900, 2262, 2650, 3144, 3668, 4332, 5054, 5940, 6910, 8102, 9404, 10986, 12732, 14824, 17148, 19918
Offset: 1

Views

Author

Omar E. Pol, Jan 13 2020

Keywords

Comments

a(n) is the number of balanced partitions of n (cf. A047993) that are also non-self-conjugate (cf. A330644).

Crossrefs

Formula

a(n) = A047993(n) - A000700(n).
a(n) = 2*A067772(n).

A363220 Number of integer partitions of n whose conjugate has the same median.

Original entry on oeis.org

1, 0, 1, 1, 1, 3, 3, 8, 8, 12, 12, 15, 21, 27, 36, 49, 65, 85, 112, 149, 176, 214, 257, 311, 378, 470, 572, 710, 877, 1080, 1322, 1637, 1983, 2416, 2899, 3465, 4107, 4891, 5763, 6820, 8071, 9542, 11289, 13381, 15808, 18710, 22122, 26105, 30737, 36156, 42377
Offset: 1

Views

Author

Gus Wiseman, May 29 2023

Keywords

Comments

The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).

Examples

			The partition y = (4,3,1,1) has median 2, and its conjugate (4,2,2,1) also has median 2, so y is counted under a(9).
The a(1) = 1 through a(9) = 8 partitions:
  (1)  .  (21)  (22)  (311)  (321)   (511)    (332)     (333)
                             (411)   (4111)   (422)     (711)
                             (3111)  (31111)  (611)     (4221)
                                              (3311)    (4311)
                                              (4211)    (6111)
                                              (5111)    (51111)
                                              (41111)   (411111)
                                              (311111)  (3111111)
		

Crossrefs

For mean instead of median we have A047993.
For product instead of median we have A325039, ranks A325040.
For union instead of conjugate we have A360245, complement A360244.
Median of conjugate by rank is A363219.
These partitions are ranked by A363261.
A000700 counts self-conjugate partitions, ranks A088902.
A046682 and A352487-A352490 pertain to excedance set.
A122111 represents partition conjugation.
A325347 counts partitions with integer median.
A330644 counts non-self-conjugate partitions (twice A000701), ranks A352486.
A352491 gives n minus Heinz number of conjugate.

Programs

  • Mathematica
    conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
    Table[Length[Select[IntegerPartitions[n],Median[#]==Median[conj[#]]&]],{n,30}]
Previous Showing 21-24 of 24 results.