A332193
a(n) = 10^(2n+1) - 1 - 6*10^n.
Original entry on oeis.org
3, 939, 99399, 9993999, 999939999, 99999399999, 9999993999999, 999999939999999, 99999999399999999, 9999999993999999999, 999999999939999999999, 99999999999399999999999, 9999999999993999999999999, 999999999999939999999999999, 99999999999999399999999999999, 9999999999999993999999999999999
Offset: 0
Cf.
A138148 (cyclops numbers with binary digits only),
A002113 (palindromes).
Cf.
A332113 ..
A332183 (variants with different repeated digit 1, ..., 8).
-
A332193 := n -> 10^(n*2+1)-1-6*10^n;
-
Array[ 10^(2 # + 1) - 1 - 6*10^# &, 15, 0]
LinearRecurrence[{111,-1110,1000},{3,939,99399},20] (* Harvey P. Dale, Jan 19 2024 *)
-
apply( {A332193(n)=10^(n*2+1)-1-6*10^n}, [0..15])
-
def A332193(n): return 10**(n*2+1)-1-6*10^n
A332195
a(n) = 10^(2n+1) - 4*10^n - 1.
Original entry on oeis.org
5, 959, 99599, 9995999, 999959999, 99999599999, 9999995999999, 999999959999999, 99999999599999999, 9999999995999999999, 999999999959999999999, 99999999999599999999999, 9999999999995999999999999, 999999999999959999999999999, 99999999999999599999999999999, 9999999999999995999999999999999
Offset: 0
Cf.
A138148 (cyclops numbers with binary digits only),
A002113 (palindromes).
Cf.
A332115 ..
A332185 (variants with different repeated digit 1, ..., 8).
-
A332195 := n -> 10^(n*2+1)-4*10^n-1;
-
Array[ 10^(2 # + 1) - 1 - 4*10^# &, 15, 0]
-
apply( {A332195(n)=10^(n*2+1)-1-4*10^n}, [0..15])
-
def A332195(n): return 10**(n*2+1)-1-4*10^n
A332196
a(n) = 10^(2n+1) - 1 - 3*10^n.
Original entry on oeis.org
6, 969, 99699, 9996999, 999969999, 99999699999, 9999996999999, 999999969999999, 99999999699999999, 9999999996999999999, 999999999969999999999, 99999999999699999999999, 9999999999996999999999999, 999999999999969999999999999, 99999999999999699999999999999
Offset: 0
Cf.
A138148 (cyclops numbers with binary digits only),
A002113 (palindromes).
Cf.
A332116 ..
A332186 (variants with different repeated digit 1, ..., 8).
-
A332196 := n -> 10^(n*2+1)-1-3*10^n;
-
Array[ 10^(2 # + 1) - 1 - 3*10^# &, 15, 0]
FromDigits/@Table[Join[PadLeft[{6},n,9],PadRight[{},n-1,9]],{n,30}] (* or *) LinearRecurrence[{111,-1110,1000},{6,969,99699},30] (* Harvey P. Dale, May 03 2021 *)
-
apply( {A332196(n)=10^(n*2+1)-1-3*10^n}, [0..15])
-
def A332196(n): return 10**(n*2+1)-1-3*10^n
A332194
a(n) = 10^(2n+1) - 1 - 5*10^n.
Original entry on oeis.org
4, 949, 99499, 9994999, 999949999, 99999499999, 9999994999999, 999999949999999, 99999999499999999, 9999999994999999999, 999999999949999999999, 99999999999499999999999, 9999999999994999999999999, 999999999999949999999999999, 99999999999999499999999999999, 9999999999999994999999999999999
Offset: 0
Cf.
A138148 (cyclops numbers with binary digits only),
A002113 (palindromes).
Cf.
A332114 ..
A332184 (variants with different repeated digit 1, ..., 8).
-
A332194 := n -> 10^(n*2+1)-1-5*10^n;
-
Array[ 10^(2 # + 1) -1 -5*10^# &, 15, 0]
-
apply( {A332194(n)=10^(n*2+1)-1-5*10^n}, [0..15])
-
def A332194(n): return 10**(n*2+1)-1-5*10^n
A332170
a(n) = 7*(10^(2n+1)-1)/9 - 7*10^n.
Original entry on oeis.org
0, 707, 77077, 7770777, 777707777, 77777077777, 7777770777777, 777777707777777, 77777777077777777, 7777777770777777777, 777777777707777777777, 77777777777077777777777, 7777777777770777777777777, 777777777777707777777777777, 77777777777777077777777777777, 7777777777777770777777777777777
Offset: 0
Cf.
A138148 (cyclops numbers with binary digits only),
A002113 (palindromes).
Cf.
A332120 ..
A332190 (variants with different repeated digit 2, ..., 9).
Cf.
A332171 ..
A332179 (variants with different middle digit 1, ..., 9).
-
A332170 := n -> 7*(10^(2*n+1)-1)/9-7*10^n;
-
Array[7 ((10^(2 # + 1)-1)/9 - 10^#) &, 15, 0]
-
apply( {A332170(n)=(10^(n*2+1)\9-10^n)*7}, [0..15])
-
def A332170(n): return (10**(n*2+1)//9-10^n)*7
Comments