cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A332872 Number of ordered set partitions of {1..n} where no element of any block is greater than any element of a non-adjacent consecutive block.

Original entry on oeis.org

1, 1, 3, 10, 34, 116, 396, 1352, 4616, 15760
Offset: 0

Views

Author

Gus Wiseman, Mar 06 2020

Keywords

Comments

After initial terms, first differs from A291292 at a(7) = 1352, A291292(8) = 1353.
Conjectured to be the same as A007052, shifted right once.

Examples

			The a(1) = 1 through a(3) = 10 ordered set partitions:
  {{1}}  {{1,2}}    {{1,2,3}}
         {{1},{2}}  {{1},{2,3}}
         {{2},{1}}  {{1,2},{3}}
                    {{1,3},{2}}
                    {{2},{1,3}}
                    {{2,3},{1}}
                    {{3},{1,2}}
                    {{1},{2},{3}}
                    {{1},{3},{2}}
                    {{2},{1},{3}}
		

Crossrefs

Row sums of A332673.
Set partitions are A000110.
Ordered set-partitions are A000670.
Unimodal sequences covering an initial interval are A007052.

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    Table[Length[Select[Join@@Permutations/@sps[Range[n]],!MatchQ[#,{_,{_,a_,_},,{_,b_,_},_}/;a>b]&]],{n,0,5}]

A333146 Number of non-unimodal negated permutations of the multiset of prime indices of n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 1, 0, 2, 0, 0, 0, 0, 0, 3, 0, 0, 0, 2, 0, 2, 0, 1, 1, 0, 0, 3, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 8, 0, 0, 1, 0, 0, 2, 0, 1, 0, 2, 0, 7, 0, 0, 0, 1, 0, 2, 0, 3, 0, 0, 0, 8, 0, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Mar 09 2020

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
A sequence of integers is unimodal if it is the concatenation of a weakly increasing and a weakly decreasing sequence.

Examples

			The a(n) permutations for n = 12, 24, 36, 60, 72, 90, 96:
  (121)  (1121)  (1212)  (1132)  (11212)  (1232)  (111121)
         (1211)  (1221)  (1213)  (11221)  (1322)  (111211)
                 (2121)  (1231)  (12112)  (2132)  (112111)
                         (1312)  (12121)  (2231)  (121111)
                         (1321)  (12211)  (2312)
                         (2131)  (21121)  (2321)
                         (2311)  (21211)
                         (3121)
		

Crossrefs

Dominated by A008480.
The non-negated version is A332671.
A more interesting version is A332742.
The complement is counted by A333145.
Unimodal compositions are A001523.
Unimodal normal sequences are A007052.
Compositions whose negation is unimodal are A332578.
Partitions with unimodal negated run-lengths are A332638.
Numbers with non-unimodal negated unsorted prime signature are A332642.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    unimodQ[q_]:=Or[Length[q]<=1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]];
    Table[Length[Select[Permutations[primeMS[n]],!unimodQ[-#]&]],{n,30}]

Formula

a(n) + A333145(n) = A008480(n).

A332725 Heinz numbers of integer partitions whose negated first differences are not unimodal.

Original entry on oeis.org

90, 126, 180, 198, 234, 252, 270, 306, 342, 350, 360, 378, 396, 414, 450, 468, 504, 522, 525, 540, 550, 558, 594, 612, 630, 650, 666, 684, 700, 702, 720, 738, 756, 774, 792, 810, 825, 828, 846, 850, 882, 900, 910, 918, 936, 950, 954, 975, 990, 1008, 1026, 1044
Offset: 1

Views

Author

Gus Wiseman, Feb 26 2020

Keywords

Comments

A sequence of positive integers is unimodal if it is the concatenation of a weakly increasing and a weakly decreasing sequence.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.

Examples

			The sequence of terms together with their prime indices begins:
    90: {1,2,2,3}
   126: {1,2,2,4}
   180: {1,1,2,2,3}
   198: {1,2,2,5}
   234: {1,2,2,6}
   252: {1,1,2,2,4}
   270: {1,2,2,2,3}
   306: {1,2,2,7}
   342: {1,2,2,8}
   350: {1,3,3,4}
   360: {1,1,1,2,2,3}
   378: {1,2,2,2,4}
   396: {1,1,2,2,5}
   414: {1,2,2,9}
   450: {1,2,2,3,3}
   468: {1,1,2,2,6}
   504: {1,1,1,2,2,4}
   522: {1,2,2,10}
   525: {2,3,3,4}
   540: {1,1,2,2,2,3}
For example, 350 is the Heinz number of (4,3,3,1), with negated first differences (1,0,2), which is not unimodal, so 350 is in the sequence.
		

Crossrefs

The complement is too full.
The enumeration of these partitions by sum is A332284.
The version where the last part is taken to be 0 is A332832.
Non-unimodal permutations are A059204.
Non-unimodal compositions are A115981.
Non-unimodal normal sequences are A328509.
Partitions with non-unimodal run-lengths are A332281.
Heinz numbers of partitions with non-unimodal run-lengths are A332282.
Heinz numbers of partitions with weakly increasing differences are A325360.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    unimodQ[q_]:=Or[Length[q]<=1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]];
    Select[Range[1000],!unimodQ[Differences[primeMS[#]]]&]

A333145 Number of unimodal negated permutations of the multiset of prime indices of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 2, 1, 1, 3, 1, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 4, 1, 1, 2, 2, 2, 3, 1, 2, 2, 2, 1, 4, 1, 2, 2, 2, 1, 2, 1, 3, 2, 2, 1, 4, 2, 2, 2, 2, 1, 4, 1, 2, 2, 1, 2, 4, 1, 2, 2, 4, 1, 3, 1, 2, 3, 2, 2, 4, 1, 2, 1, 2, 1, 4, 2, 2, 2
Offset: 1

Views

Author

Gus Wiseman, Mar 09 2020

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
A sequence of integers is unimodal if it is the concatenation of a weakly increasing and a weakly decreasing sequence.
Also permutations of the multiset of prime indices of n avoiding the patterns (1,2,1), (1,3,2), and (2,3,1).
Also the number divisors of n not divisible by the least prime factor of n. The other divisors are counted by A069157. - Gus Wiseman, Apr 12 2022

Examples

			The a(n) permutations for n = 2, 6, 18, 30, 90, 162, 210, 450:
  (1)  (12)  (122)  (123)  (1223)  (12222)  (1234)  (12233)
       (21)  (212)  (213)  (2123)  (21222)  (2134)  (21233)
             (221)  (312)  (2213)  (22122)  (3124)  (22133)
                    (321)  (3122)  (22212)  (3214)  (31223)
                           (3212)  (22221)  (4123)  (32123)
                           (3221)           (4213)  (32213)
                                            (4312)  (33122)
                                            (4321)  (33212)
                                                    (33221)
		

Crossrefs

Dominated by A008480.
The complementary divisors are counted by A069157.
The non-negated version is A332288.
A more interesting version is A332741.
The complement is counted by A333146.
A001523 counts unimodal compositions.
A007052 counts unimodal normal sequences.
A028233 gives the highest power of the least prime factor, quotient A028234.
A332578 counts compositions whose negation is unimodal.
A332638 counts partitions with unimodal negated run-lengths.
A332642 lists numbers with non-unimodal negated unsorted prime signature.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    unimodQ[q_]:=Or[Length[q]<=1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]];
    Table[Length[Select[Permutations[primeMS[n]],unimodQ[-#]&]],{n,30}]

Formula

a(n) + A333146(n) = A008480(n).
a(n) = A000005(A028234(n)). - Gus Wiseman, Apr 14 2022
a(n) = A000005(n) - A069157(n). - Gus Wiseman, Apr 14 2022
Previous Showing 11-14 of 14 results.