cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-36 of 36 results.

A333148 Number of compositions of n whose non-adjacent parts are weakly decreasing.

Original entry on oeis.org

1, 1, 2, 4, 7, 12, 19, 30, 46, 69, 102, 149, 214, 304, 428, 596, 823, 1127, 1532, 2068, 2774, 3697, 4900, 6460, 8474, 11061, 14375, 18600, 23970, 30770, 39354, 50153, 63702, 80646, 101783, 128076, 160701, 201076, 250933, 312346, 387832, 480409, 593716, 732105, 900810, 1106063, 1355336, 1657517, 2023207, 2464987, 2997834, 3639464
Offset: 0

Views

Author

Gus Wiseman, May 16 2020

Keywords

Examples

			The a(1) = 1 through a(6) = 19 compositions:
  (1)  (2)   (3)    (4)     (5)      (6)
       (11)  (12)   (13)    (14)     (15)
             (21)   (22)    (23)     (24)
             (111)  (31)    (32)     (33)
                    (121)   (41)     (42)
                    (211)   (131)    (51)
                    (1111)  (212)    (141)
                            (221)    (222)
                            (311)    (231)
                            (1211)   (312)
                            (2111)   (321)
                            (11111)  (411)
                                     (1311)
                                     (2121)
                                     (2211)
                                     (3111)
                                     (12111)
                                     (21111)
                                     (111111)
For example, (2,3,1,2) is such a composition, because the non-adjacent pairs of parts are (2,1), (2,2), (3,2), all of which are weakly decreasing.
		

Crossrefs

Unimodal compositions are A001523.
The case of normal sequences appears to be A028859.
A version for ordered set partitions is A332872.
The case of strict compositions is A333150.
The version for strictly decreasing parts is A333193.
Standard composition numbers (A066099) of these compositions are A334966.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],!MatchQ[#,{_,x_,,y_,_}/;y>x]&]],{n,0,15}]
  • Sage
    def a333148(n): return number_of_partitions(n) + sum( Partitions(m, max_part=l, length=k).cardinality() * Partitions(n-m-l^2, min_length=k+2*l).cardinality() for l in range(1, (n+1).isqrt()) for m in range((n-l^2-2*l)*l//(l+1)+1) for k in range(ceil(m/l), min(m,n-m-l^2-2*l)+1) ) # Max Alekseyev, Oct 31 2024

Formula

See Sage code for the formula. - Max Alekseyev, Oct 31 2024

Extensions

Edited and terms a(21)-a(51) added by Max Alekseyev, Oct 30 2024

A333146 Number of non-unimodal negated permutations of the multiset of prime indices of n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 1, 0, 2, 0, 0, 0, 0, 0, 3, 0, 0, 0, 2, 0, 2, 0, 1, 1, 0, 0, 3, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 8, 0, 0, 1, 0, 0, 2, 0, 1, 0, 2, 0, 7, 0, 0, 0, 1, 0, 2, 0, 3, 0, 0, 0, 8, 0, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Mar 09 2020

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
A sequence of integers is unimodal if it is the concatenation of a weakly increasing and a weakly decreasing sequence.

Examples

			The a(n) permutations for n = 12, 24, 36, 60, 72, 90, 96:
  (121)  (1121)  (1212)  (1132)  (11212)  (1232)  (111121)
         (1211)  (1221)  (1213)  (11221)  (1322)  (111211)
                 (2121)  (1231)  (12112)  (2132)  (112111)
                         (1312)  (12121)  (2231)  (121111)
                         (1321)  (12211)  (2312)
                         (2131)  (21121)  (2321)
                         (2311)  (21211)
                         (3121)
		

Crossrefs

Dominated by A008480.
The non-negated version is A332671.
A more interesting version is A332742.
The complement is counted by A333145.
Unimodal compositions are A001523.
Unimodal normal sequences are A007052.
Compositions whose negation is unimodal are A332578.
Partitions with unimodal negated run-lengths are A332638.
Numbers with non-unimodal negated unsorted prime signature are A332642.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    unimodQ[q_]:=Or[Length[q]<=1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]];
    Table[Length[Select[Permutations[primeMS[n]],!unimodQ[-#]&]],{n,30}]

Formula

a(n) + A333145(n) = A008480(n).

A335374 Numbers k such that the k-th composition in standard order (A066099) is not co-unimodal.

Original entry on oeis.org

13, 25, 27, 29, 41, 45, 49, 50, 51, 53, 54, 55, 57, 59, 61, 77, 81, 82, 83, 89, 91, 93, 97, 98, 99, 101, 102, 103, 105, 107, 108, 109, 110, 111, 113, 114, 115, 117, 118, 119, 121, 123, 125, 141, 145, 153, 155, 157, 161, 162, 163, 165, 166, 167, 169, 173, 177
Offset: 1

Views

Author

Gus Wiseman, Jun 03 2020

Keywords

Comments

A sequence of integers is co-unimodal if it is the concatenation of a weakly decreasing and a weakly increasing sequence, implying that its negation is unimodal.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The sequence together with the corresponding compositions begins:
  13: (1,2,1)
  25: (1,3,1)
  27: (1,2,1,1)
  29: (1,1,2,1)
  41: (2,3,1)
  45: (2,1,2,1)
  49: (1,4,1)
  50: (1,3,2)
  51: (1,3,1,1)
  53: (1,2,2,1)
  54: (1,2,1,2)
  55: (1,2,1,1,1)
  57: (1,1,3,1)
  59: (1,1,2,1,1)
  61: (1,1,1,2,1)
  77: (3,1,2,1)
  81: (2,4,1)
  82: (2,3,2)
  83: (2,3,1,1)
  89: (2,1,3,1)
		

Crossrefs

This is the dual version of A335373.
The case that is not unimodal either is A335375.
Unimodal compositions are A001523.
Unimodal normal sequences are A007052.
Unimodal permutations are A011782.
Non-unimodal permutations are A059204.
Non-unimodal compositions are A115981.
Non-unimodal normal sequences are A328509.
Numbers with non-unimodal unsorted prime signature are A332282.
Co-unimodal compositions are A332578.
Numbers with non-co-unimodal unsorted prime signature are A332642.
Non-co-unimodal compositions are A332669.

Programs

  • Mathematica
    unimodQ[q_]:=Or[Length[q]<=1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]];
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Select[Range[0,100],!unimodQ[-stc[#]]&]

A333145 Number of unimodal negated permutations of the multiset of prime indices of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 2, 1, 1, 3, 1, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 4, 1, 1, 2, 2, 2, 3, 1, 2, 2, 2, 1, 4, 1, 2, 2, 2, 1, 2, 1, 3, 2, 2, 1, 4, 2, 2, 2, 2, 1, 4, 1, 2, 2, 1, 2, 4, 1, 2, 2, 4, 1, 3, 1, 2, 3, 2, 2, 4, 1, 2, 1, 2, 1, 4, 2, 2, 2
Offset: 1

Views

Author

Gus Wiseman, Mar 09 2020

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
A sequence of integers is unimodal if it is the concatenation of a weakly increasing and a weakly decreasing sequence.
Also permutations of the multiset of prime indices of n avoiding the patterns (1,2,1), (1,3,2), and (2,3,1).
Also the number divisors of n not divisible by the least prime factor of n. The other divisors are counted by A069157. - Gus Wiseman, Apr 12 2022

Examples

			The a(n) permutations for n = 2, 6, 18, 30, 90, 162, 210, 450:
  (1)  (12)  (122)  (123)  (1223)  (12222)  (1234)  (12233)
       (21)  (212)  (213)  (2123)  (21222)  (2134)  (21233)
             (221)  (312)  (2213)  (22122)  (3124)  (22133)
                    (321)  (3122)  (22212)  (3214)  (31223)
                           (3212)  (22221)  (4123)  (32123)
                           (3221)           (4213)  (32213)
                                            (4312)  (33122)
                                            (4321)  (33212)
                                                    (33221)
		

Crossrefs

Dominated by A008480.
The complementary divisors are counted by A069157.
The non-negated version is A332288.
A more interesting version is A332741.
The complement is counted by A333146.
A001523 counts unimodal compositions.
A007052 counts unimodal normal sequences.
A028233 gives the highest power of the least prime factor, quotient A028234.
A332578 counts compositions whose negation is unimodal.
A332638 counts partitions with unimodal negated run-lengths.
A332642 lists numbers with non-unimodal negated unsorted prime signature.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    unimodQ[q_]:=Or[Length[q]<=1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]];
    Table[Length[Select[Permutations[primeMS[n]],unimodQ[-#]&]],{n,30}]

Formula

a(n) + A333146(n) = A008480(n).
a(n) = A000005(A028234(n)). - Gus Wiseman, Apr 14 2022
a(n) = A000005(n) - A069157(n). - Gus Wiseman, Apr 14 2022

A332871 Number of compositions of n whose run-lengths are not weakly increasing.

Original entry on oeis.org

0, 0, 0, 0, 1, 4, 8, 24, 55, 128, 282, 625, 1336, 2855, 6000, 12551, 26022, 53744, 110361, 225914, 460756, 937413, 1902370, 3853445, 7791647, 15732468, 31725191, 63907437, 128613224, 258626480, 519700800, 1043690354, 2094882574, 4202903667, 8428794336, 16897836060
Offset: 0

Views

Author

Gus Wiseman, Feb 29 2020

Keywords

Comments

A composition of n is a finite sequence of positive integers summing to n.
Also compositions whose run-lengths are not weakly decreasing.

Examples

			The a(4) = 1 through a(6) = 8 compositions:
  (112)  (113)   (114)
         (221)   (1113)
         (1112)  (1131)
         (1121)  (1221)
                 (2112)
                 (11112)
                 (11121)
                 (11211)
For example, the composition (2,1,1,2) has run-lengths (1,2,1), which are not weakly increasing, so (2,1,1,2) is counted under a(6).
		

Crossrefs

The version for the compositions themselves (not run-lengths) is A056823.
The version for unsorted prime signature is A112769, with dual A071365.
The case without weakly decreasing run-lengths either is A332833.
The complement is counted by A332836.
Compositions that are not unimodal are A115981.
Compositions with equal run-lengths are A329738.
Compositions whose run-lengths are not unimodal are A332727.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],!LessEqual@@Length/@Split[#]&]],{n,0,10}]

Formula

a(n) = 2^(n - 1) - A332836(n).

Extensions

Terms a(21) and beyond from Andrew Howroyd, Dec 30 2020

A335375 Numbers k such that the k-th composition in standard order (A066099) is neither unimodal nor co-unimodal.

Original entry on oeis.org

45, 54, 77, 89, 91, 93, 102, 108, 109, 110, 118, 141, 153, 155, 157, 166, 173, 177, 178, 179, 181, 182, 183, 185, 187, 189, 198, 204, 205, 206, 214, 216, 217, 218, 219, 220, 221, 222, 230, 236, 237, 238, 246, 269, 281, 283, 285, 297, 301, 305, 306, 307, 309
Offset: 1

Views

Author

Gus Wiseman, Jun 04 2020

Keywords

Comments

A sequence of integers is unimodal if it is the concatenation of a weakly increasing and a weakly decreasing sequence. It is co-unimodal if its negation is unimodal.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The sequence together with the corresponding compositions begins:
   45: (2,1,2,1)
   54: (1,2,1,2)
   77: (3,1,2,1)
   89: (2,1,3,1)
   91: (2,1,2,1,1)
   93: (2,1,1,2,1)
  102: (1,3,1,2)
  108: (1,2,1,3)
  109: (1,2,1,2,1)
  110: (1,2,1,1,2)
  118: (1,1,2,1,2)
  141: (4,1,2,1)
  153: (3,1,3,1)
  155: (3,1,2,1,1)
  157: (3,1,1,2,1)
  166: (2,3,1,2)
  173: (2,2,1,2,1)
  177: (2,1,4,1)
  178: (2,1,3,2)
  179: (2,1,3,1,1)
		

Crossrefs

Non-unimodal compositions are ranked by A335373.
Non-co-unimodal compositions are ranked by A335374.
Unimodal compositions are A001523.
Unimodal normal sequences are A007052.
Unimodal permutations are A011782.
Non-unimodal permutations are A059204.
Non-unimodal compositions are A115981.
Non-unimodal normal sequences are A328509.
Numbers with non-unimodal unsorted prime signature are A332282.
Co-unimodal compositions are A332578.
Numbers with non-co-unimodal unsorted prime signature are A332642.
Non-co-unimodal compositions are A332669.

Programs

  • Mathematica
    unimodQ[q_]:=Or[Length[q]<=1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]];
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Select[Range[0,100],!unimodQ[stc[#]]&&!unimodQ[-stc[#]]&]
Previous Showing 31-36 of 36 results.