cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 41 results. Next

A376684 Antidiagonal-sums of the absolute value of the array A376682(n,k) = n-th term of the k-th differences of the noncomposite numbers (A008578).

Original entry on oeis.org

1, 3, 4, 9, 12, 27, 50, 109, 224, 471, 942, 1773, 3118, 4957, 7038, 9373, 16256, 55461, 150622, 346763, 718972, 1377101, 2462220, 4114987, 6387718, 9112455, 12051830, 17160117, 40946860, 134463917, 349105370, 800713921, 1684145408, 3297536923, 6040907554
Offset: 0

Views

Author

Gus Wiseman, Oct 15 2024

Keywords

Examples

			The fourth antidiagonal of A376682 is: (7, 2, 0, -1, -2), so a(4) = 12.
		

Crossrefs

For the modern primes (A000040) we have A376681, absolute version of A140119.
For firsts instead of row-sums we have A030016, modern A007442.
These are the antidiagonal-sums of the absolute value of A376682 (modern A095195).
This is the absolute version of A376683.
For first zero-positions we have A376855, modern A376678.
A000040 lists the modern primes, differences A001223, seconds A036263.
A008578 lists the noncomposites, first differences A075526.

Programs

  • Mathematica
    nn=12;
    t=Table[Take[Differences[NestList[NestWhile[#+1&,#+1,!PrimeQ[#]&]&,1,2*nn],k],nn],{k,0,nn}];
    Total/@Table[Abs[t[[j,i-j+1]]],{i,nn},{j,i}]

A376855 Position of first 0 in the n-th differences of the noncomposite numbers (A008578), or 0 if it does not appear.

Original entry on oeis.org

0, 0, 1, 8, 70, 14, 48, 59, 10, 44, 3554, 101, 7020, 14083, 68098, 14527, 149678, 2698, 481055, 979720, 631895, 29812, 25340979, 50574255, 7510844, 210829338, 67248862, 224076287, 910615648, 931510270, 452499645, 2880203723, 396680866, 57954439971, 77572822441, 35394938649
Offset: 0

Views

Author

Gus Wiseman, Oct 15 2024

Keywords

Examples

			The third differences of the noncomposite numbers begin: 1, -1, 2, -4, 4, -4, 4, 0, -6, 8, ... so a(3) = 8.
		

Crossrefs

For firsts instead of positions of zeros we have A030016, modern A007442.
These are the first zero-positions in A376682, modern A376678.
For row-sums instead of zero-positions we have A376683, modern A140119.
For absolute row-sums we have A376684, modern A376681.
For composite instead of noncomposite we have A377037.
For squarefree instead of noncomposite we have A377042, nonsquarefree A377050.
For prime-power instead of noncomposite we have A377055.
A000040 lists the modern primes, differences A001223, seconds A036263.
A008578 lists the noncomposite numbers, first differences A075526.

Programs

  • Mathematica
    nn=10000;
    u=Table[Differences[Select[Range[nn],#==1||PrimeQ[#]&],k],{k,2,16}];
    mnrm[s_]:=If[Min@@s==1,mnrm[DeleteCases[s-1,0]]+1,0];
    m=Table[Position[u[[k]],0][[1,1]],{k,mnrm[Union[First/@Position[u,0]]]}]

Extensions

a(16)-a(21) from Alois P. Heinz, Oct 18 2024
a(22)-a(35) from Lucas A. Brown, Nov 03 2024

A333212 Lengths of maximal weakly decreasing subsequences in the sequence of prime gaps (A001223).

Original entry on oeis.org

1, 2, 2, 2, 1, 2, 3, 1, 3, 3, 2, 1, 3, 2, 1, 2, 2, 2, 3, 3, 2, 2, 4, 1, 2, 5, 3, 1, 3, 1, 2, 2, 1, 1, 4, 1, 2, 1, 2, 2, 2, 1, 3, 1, 3, 2, 1, 2, 2, 4, 1, 4, 4, 3, 1, 3, 2, 1, 1, 2, 5, 3, 2, 2, 2, 2, 2, 1, 3, 1, 3, 1, 2, 1, 3, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 1, 3
Offset: 1

Views

Author

Gus Wiseman, Mar 14 2020

Keywords

Comments

Prime gaps are differences between adjacent prime numbers.

Examples

			The prime gaps split into the following weakly decreasing subsequences: (1), (2,2), (4,2), (4,2), (4), (6,2), (6,4,2), (4), (6,6,2), (6,4,2), (6,4), (6), ...
		

Crossrefs

First differences of A258025 (with zero prepended).
The version for the Kolakoski sequence is A332273.
The weakly increasing version is A333215.
The unequal version is A333216.
The strictly decreasing version is A333252.
The strictly increasing version is A333253.
The equal version is A333254.
Prime gaps are A001223.
Positions of adjacent equal differences are A064113.
Weakly decreasing runs of compositions in standard order are A124765.
Positions of strict ascents in the sequence of prime gaps are A258025.

Programs

  • Mathematica
    Length/@Split[Differences[Array[Prime,100]],#1>=#2&]//Most

Formula

Ones correspond to weak prime quartets A054819, so the sum of terms up to but not including the n-th one is A000720(A054819(n - 1)).

A333253 Lengths of maximal strictly increasing subsequences in the sequence of prime gaps (A001223).

Original entry on oeis.org

2, 2, 2, 3, 2, 1, 3, 1, 2, 1, 2, 3, 1, 2, 3, 2, 2, 2, 1, 2, 1, 2, 2, 2, 1, 1, 3, 2, 1, 1, 1, 2, 1, 3, 1, 3, 2, 4, 1, 1, 3, 3, 2, 2, 3, 1, 3, 1, 2, 3, 2, 2, 1, 1, 3, 1, 1, 2, 1, 1, 2, 1, 3, 1, 2, 4, 2, 1, 1, 1, 2, 1, 2, 2, 2, 2, 2, 3, 1, 3, 1, 3, 3, 1, 2, 2, 2
Offset: 1

Views

Author

Gus Wiseman, Mar 18 2020

Keywords

Comments

Prime gaps are differences between adjacent prime numbers.

Examples

			The prime gaps split into the following strictly increasing subsequences: (1,2), (2,4), (2,4), (2,4,6), (2,6), (4), (2,4,6), (6), (2,6), (4), (2,6), (4,6,8), (4), (2,4), (2,4,14), ...
		

Crossrefs

The weakly decreasing version is A333212.
The weakly increasing version is A333215.
The unequal version is A333216.
First differences of A333231 (if its first term is 0).
The strictly decreasing version is A333252.
The equal version is A333254.
Prime gaps are A001223.
Strictly increasing runs of compositions in standard order are A124768.
Positions of strict ascents in the sequence of prime gaps are A258025.

Programs

  • Mathematica
    Length/@Split[Differences[Array[Prime,100]],#1<#2&]//Most

Formula

Partial sums are A333231. The partial sum up to but not including the n-th one is A333382(n).

A339662 Greatest gap in the partition with Heinz number n.

Original entry on oeis.org

0, 0, 1, 0, 2, 0, 3, 0, 1, 2, 4, 0, 5, 3, 1, 0, 6, 0, 7, 2, 3, 4, 8, 0, 2, 5, 1, 3, 9, 0, 10, 0, 4, 6, 2, 0, 11, 7, 5, 2, 12, 3, 13, 4, 1, 8, 14, 0, 3, 2, 6, 5, 15, 0, 4, 3, 7, 9, 16, 0, 17, 10, 3, 0, 5, 4, 18, 6, 8, 2, 19, 0, 20, 11, 1, 7, 3, 5, 21, 2, 1, 12
Offset: 1

Views

Author

Gus Wiseman, Apr 20 2021

Keywords

Comments

We define the greatest gap of a partition to be the greatest nonnegative integer less than the greatest part and not in the partition.
The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
Also the index of the greatest prime, up to the greatest prime index of n, not dividing n. A prime index of n is a number m such that prime(m) divides n.

Crossrefs

Positions of first appearances are A000040.
Positions of 0's are A055932.
The version for positions of 1's in reversed binary expansion is A063250.
The prime itself (not just the index) is A079068.
The version for crank is A257989.
The minimal instead of maximal version is A257993.
The version for greatest difference is A286469 or A286470.
Positive integers by Heinz weight and image are counted by A339737.
Positions of 1's are A339886.
A000070 counts partitions with a selected part.
A006128 counts partitions with a selected position.
A015723 counts strict partitions with a selected part.
A056239 adds up prime indices, row sums of A112798.
A073491 lists numbers with gap-free prime indices.
A238709/A238710 count partitions by least/greatest difference.
A342050/A342051 have prime indices with odd/even least gap.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    maxgap[q_]:=Max@@Complement[Range[0,If[q=={},0,Max[q]]],q];
    Table[maxgap[primeMS[n]],{n,100}]

Formula

a(n) = A000720(A079068(n)).

A376592 Points of nonzero curvature in the sequence of squarefree numbers (A005117).

Original entry on oeis.org

2, 3, 5, 6, 7, 8, 10, 13, 15, 17, 19, 20, 22, 23, 25, 26, 28, 29, 30, 31, 34, 36, 37, 38, 39, 41, 42, 44, 45, 46, 47, 49, 50, 51, 52, 54, 57, 59, 60, 61, 63, 64, 66, 67, 69, 70, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 85, 86, 88, 89, 90, 91, 92, 93, 94, 95
Offset: 1

Views

Author

Gus Wiseman, Oct 04 2024

Keywords

Comments

These are points at which the second differences (A376590) are nonzero.

Examples

			The squarefree numbers (A005117) are:
  1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 26, 29, 30, 31, 33, 34, ...
with first differences (A076259):
  1, 1, 2, 1, 1, 3, 1, 2, 1, 1, 2, 2, 2, 1, 1, 3, 3, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, ...
with first differences (A376590):
  0, 1, -1, 0, 2, -2, 1, -1, 0, 1, 0, 0, -1, 0, 2, 0, -2, 0, 1, -1, 0, 1, -1, 0, 1, ...
with nonzeros at (A376591):
  2, 3, 5, 6, 7, 8, 10, 13, 15, 17, 19, 20, 22, 23, 25, 26, 28, 29, 30, 31, 34, 36, ...
		

Crossrefs

The first differences were A076259, see also A375927, A376305, A376306, A376307, A376311.
These are the nonzeros of A376590.
The complement is A376591.
A000040 lists the prime numbers, differences A001223.
A005117 lists squarefree numbers, complement A013929 (differences A078147).
A073576 counts integer partitions into squarefree numbers, factorizations A050320.
For points of nonzero curvature: A333214 (prime), A376603 (composite), A376589 (non-perfect-power), A376595 (nonsquarefree), A376598 (prime-power), A376601 (non-prime-power).
For squarefree numbers: A076259 (first differences), A376590 (second differences), A376591 (inflection and undulation points).

Programs

  • Mathematica
    Join@@Position[Sign[Differences[Select[Range[100], SquareFreeQ],2]],1|-1]

A333252 Lengths of maximal strictly decreasing subsequences in the sequence of prime gaps (A001223).

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 2, 3, 1, 1, 2, 3, 2, 1, 3, 2, 1, 2, 2, 2, 1, 2, 1, 2, 2, 2, 1, 3, 1, 2, 2, 1, 2, 3, 1, 3, 1, 2, 2, 1, 1, 2, 2, 1, 2, 1, 2, 2, 2, 1, 3, 1, 3, 2, 1, 2, 2, 2, 2, 1, 2, 2, 1, 3, 3, 1, 1, 2, 2, 1, 1, 2, 3, 2, 3, 2, 2, 2, 2, 2, 1, 3, 1, 3, 1, 2, 1
Offset: 1

Views

Author

Gus Wiseman, Mar 18 2020

Keywords

Comments

Prime gaps are differences between adjacent prime numbers.

Examples

			The prime gaps split into the following strictly decreasing subsequences: (1), (2), (2), (4,2), (4,2), (4), (6,2), (6,4,2), (4), (6), (6,2), (6,4,2), (6,4), (6), (8,4,2), (4,2), (4), (14,4), (6,2), (10,2), (6), (6,4), (6), ...
		

Crossrefs

The weakly decreasing version is A333212.
The weakly increasing version is A333215.
The unequal version is A333216.
First differences of A333230 (if the first term is 0).
The strictly increasing version is A333253.
The equal version is A333254.
Prime gaps are A001223.
Strictly decreasing runs of compositions in standard order are A124769.
Positions of strict descents in the sequence of prime gaps are A258026.

Programs

  • Mathematica
    Length/@Split[Differences[Array[Prime,100]],#1>#2&]//Most

Formula

Partial sums are A333230. The partial sum up to but not including the n-th one is A333381(n - 1).

A333383 First index of weakly increasing prime quartets.

Original entry on oeis.org

1, 2, 7, 13, 14, 22, 28, 35, 38, 45, 49, 54, 60, 64, 69, 70, 75, 78, 85, 89, 95, 104, 109, 116, 117, 122, 123, 144, 148, 152, 155, 159, 160, 163, 164, 173, 178, 182, 183, 184, 187, 194, 195, 198, 201, 206, 212, 215, 218, 219, 225, 226, 230, 236, 237, 238, 244
Offset: 1

Views

Author

Gus Wiseman, May 14 2020

Keywords

Comments

Let g(i) = prime(i + 1) - prime(i). These are numbers k such that g(k) <= g(k + 1) <= g(k + 2).

Examples

			The first 10 weakly increasing prime quartets:
    2   3   5   7
    3   5   7  11
   17  19  23  29
   41  43  47  53
   43  47  53  59
   79  83  89  97
  107 109 113 127
  149 151 157 163
  163 167 173 179
  197 199 211 223
For example, 43 is the 14th prime, and the primes (43,47,53,59) have differences (4,6,6), which are weakly increasing, so 14 is in the sequence.
		

Crossrefs

Prime gaps are A001223.
Second prime gaps are A036263.
Strictly decreasing prime quartets are A054804.
Strictly increasing prime quartets are A054819.
Equal prime quartets are A090832.
Weakly increasing prime quartets are A333383 (this sequence).
Weakly decreasing prime quartets are A333488.
Unequal prime quartets are A333490.
Partially unequal prime quartets are A333491.
Positions of adjacent equal prime gaps are A064113.
Positions of strict ascents in prime gaps are A258025.
Positions of strict descents in prime gaps are A258026.
Positions of adjacent unequal prime gaps are A333214.
Positions of weak ascents in prime gaps are A333230.
Positions of weak descents in prime gaps are A333231.
Indices of weakly increasing rows of A066099 are A225620.
Lengths of maximal weakly increasing subsequences of prime gaps: A333215.
Lengths of maximal strictly decreasing subsequences of prime gaps: A333252.

Programs

  • Mathematica
    ReplaceList[Array[Prime,100],{_,x_,y_,z_,t_,_}/;y-x<=z-y<=t-z:>PrimePi[x]]

A333490 First index of unequal prime quartets.

Original entry on oeis.org

7, 8, 10, 11, 13, 17, 18, 19, 20, 22, 23, 24, 28, 30, 31, 32, 34, 40, 42, 44, 47, 49, 50, 51, 52, 57, 58, 59, 60, 61, 62, 64, 65, 66, 67, 68, 69, 70, 75, 76, 78, 79, 82, 83, 85, 86, 87, 89, 90, 91, 94, 95, 96, 97, 98, 99, 104, 111, 112, 113, 114, 115, 116, 119
Offset: 1

Views

Author

Gus Wiseman, May 15 2020

Keywords

Comments

Let g(i) = prime(i + 1) - prime(i). These are numbers k such that g(k), g(k + 1), and g(k + 2) are all different.

Examples

			The first 10 unequal prime quartets:
  17  19  23  29
  19  23  29  31
  29  31  37  41
  31  37  41  43
  41  43  47  53
  59  61  67  71
  61  67  71  73
  67  71  73  79
  71  73  79  83
  79  83  89  97
For example, 83 is the 23rd prime, and the primes (83,89,97,101) have differences (6,8,4), which are all distinct, so 23 is in the sequence.
		

Crossrefs

Primes are A000040.
Prime gaps are A001223.
Second prime gaps are A036263.
Indices of unequal rows of A066099 are A233564.
Lengths of maximal anti-run subsequences of prime gaps are A333216.
Lengths of maximal runs of prime gaps are A333254.
Maximal anti-runs in standard compositions are counted by A333381.
Indices of anti-run rows of A066099 are A333489.
Strictly decreasing prime quartets are A054804.
Strictly increasing prime quartets are A054819.
Equal prime quartets are A090832.
Weakly increasing prime quartets are A333383.
Weakly decreasing prime quartets are A333488.
Unequal prime quartets are A333490 (this sequence).
Partially unequal prime quartets are A333491.
Positions of adjacent equal prime gaps are A064113.
Positions of strict ascents in prime gaps are A258025.
Positions of strict descents in prime gaps are A258026.
Positions of adjacent unequal prime gaps are A333214.
Positions of weak ascents in prime gaps are A333230.
Positions of weak descents in prime gaps are A333231.

Programs

  • Mathematica
    ReplaceList[Array[Prime,100],{_,x_,y_,z_,t_,_}/;y-x!=z-y!=t-z:>PrimePi[x]]

A333491 First index of partially unequal prime quartets.

Original entry on oeis.org

3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 37, 40, 41, 42, 43, 44, 47, 48, 49, 50, 51, 52, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 74, 75, 76, 77, 78, 79, 80, 81, 82
Offset: 1

Views

Author

Gus Wiseman, May 15 2020

Keywords

Comments

Let g(i) = prime(i + 1) - prime(i). These are numbers k such that g(k) != g(k + 1) != g(k + 2), but we may have g(k) = g(k + 2).

Examples

			The first 10 partially unequal prime quartets:
   5  7 11 13
   7 11 13 17
  11 13 17 19
  13 17 19 23
  17 19 23 29
  19 23 29 31
  23 29 31 37
  29 31 37 41
  31 37 41 43
  37 41 43 47
		

Crossrefs

Primes are A000040.
Prime gaps are A001223.
Second prime gaps are A036263.
Indices of unequal rows of A066099 are A233564.
Lengths of maximal anti-runs of prime gaps are A333216.
Lengths of maximal runs of prime gaps are A333254.
Maximal anti-runs in standard compositions are counted by A333381.
Indices of anti-run rows of A066099 are A333489.
Strictly decreasing prime quartets are A054804.
Strictly increasing prime quartets are A054819.
Equal prime quartets are A090832.
Weakly increasing prime quartets are A333383.
Weakly decreasing prime quartets are A333488.
Unequal prime quartets are A333490.
Partially unequal prime quartets are A333491 (this sequence).
Positions of adjacent equal prime gaps are A064113.
Positions of strict ascents in prime gaps are A258025.
Positions of strict descents in prime gaps are A258026.
Positions of adjacent unequal prime gaps are A333214.
Positions of weak ascents in prime gaps are A333230.
Positions of weak descents in prime gaps are A333231.

Programs

  • Mathematica
    ReplaceList[Array[Prime,100],{_,x_,y_,z_,t_,_}/;y-x!=z-y&&z-y!=t-z:>PrimePi[x]]
    PrimePi[#]&/@(Select[Partition[Prime[Range[90]],4,1],#[[2]]-#[[1]]!=#[[3]]-#[[2]]&&#[[3]]-#[[2]]!=#[[4]]-#[[3]]&][[;;,1]]) (* Harvey P. Dale, Aug 05 2025 *)
Previous Showing 21-30 of 41 results. Next