cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 75 results. Next

A344618 Reverse-alternating sums of standard compositions (A066099). Alternating sums of the compositions ranked by A228351.

Original entry on oeis.org

0, 1, 2, 0, 3, -1, 1, 1, 4, -2, 0, 2, 2, 0, 2, 0, 5, -3, -1, 3, 1, 1, 3, -1, 3, -1, 1, 1, 3, -1, 1, 1, 6, -4, -2, 4, 0, 2, 4, -2, 2, 0, 2, 0, 4, -2, 0, 2, 4, -2, 0, 2, 2, 0, 2, 0, 4, -2, 0, 2, 2, 0, 2, 0, 7, -5, -3, 5, -1, 3, 5, -3, 1, 1, 3, -1, 5, -3, -1, 3
Offset: 0

Views

Author

Gus Wiseman, Jun 03 2021

Keywords

Comments

Up to sign, same as A124754.
The reverse-alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^(k-i) y_i.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The sequence of nonnegative integers together with the corresponding standard compositions and their reverse-alternating sums begins:
  0:     () ->  0    15: (1111) ->  0    30:  (1112) ->  1
  1:    (1) ->  1    16:    (5) ->  5    31: (11111) ->  1
  2:    (2) ->  2    17:   (41) -> -3    32:     (6) ->  6
  3:   (11) ->  0    18:   (32) -> -1    33:    (51) -> -4
  4:    (3) ->  3    19:  (311) ->  3    34:    (42) -> -2
  5:   (21) -> -1    20:   (23) ->  1    35:   (411) ->  4
  6:   (12) ->  1    21:  (221) ->  1    36:    (33) ->  0
  7:  (111) ->  1    22:  (212) ->  3    37:   (321) ->  2
  8:    (4) ->  4    23: (2111) -> -1    38:   (312) ->  4
  9:   (31) -> -2    24:   (14) ->  3    39:  (3111) -> -2
  10:  (22) ->  0    25:  (131) -> -1    40:    (24) ->  2
  11: (211) ->  2    26:  (122) ->  1    41:   (231) ->  0
  12:  (13) ->  2    27: (1211) ->  1    42:   (222) ->  2
  13: (121) ->  0    28:  (113) ->  3    43:  (2211) ->  0
  14: (112) ->  2    29: (1121) -> -1    44:   (213) ->  4
Triangle begins (row lengths A011782):
  0
  1
  2  0
  3 -1  1  1
  4 -2  0  2  2  0  2  0
  5 -3 -1  3  1  1  3 -1  3 -1  1  1  3 -1  1  1
		

Crossrefs

Up to sign, same as the reverse version A124754.
The version for Heinz numbers of partitions is A344616.
Positions of zeros are A344619.
A000041 counts partitions of 2n with alternating sum 0, ranked by A000290.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A316524 is the alternating sum of the prime indices of n (reverse: A344616).
A116406 counts compositions with alternating sum >= 0.
A344610 counts partitions by sum and positive reverse-alternating sum.
A344611 counts partitions of 2n with reverse-alternating sum >= 0.
All of the following pertain to compositions in standard order:
- The length is A000120.
- Converting to reversed ranking gives A059893.
- The rows are A066099.
- The sum is A070939.
- The runs are counted by A124767.
- The reversed version is A228351.
- Strict compositions are ranked by A233564.
- Constant compositions are ranked by A272919.
- The Heinz number is A333219.
- Anti-run compositions are ranked by A333489.

Programs

  • Mathematica
    sats[y_]:=Sum[(-1)^(i-Length[y])*y[[i]],{i,Length[y]}];
    stc[n_]:=Reverse[Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]]
    Table[sats[stc[n]],{n,0,100}]

A351014 Number of distinct runs in the n-th composition in standard order.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 2, 1, 1, 2, 1, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 3, 2, 1, 1, 2, 2, 2, 1, 3, 3, 2, 2, 3, 1, 2, 3, 2, 2, 2, 2, 2, 3, 3, 3, 2, 2, 3, 2, 3, 2, 2, 2, 3, 2, 1, 1, 2, 2, 2, 2, 3, 3, 2, 2, 2, 2, 3, 2, 3, 3, 2, 2, 3, 2, 3, 2, 2, 3
Offset: 0

Views

Author

Gus Wiseman, Feb 07 2022

Keywords

Comments

The n-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of n, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The number 3310 has binary expansion 110011101110 and standard composition (1,3,1,1,2,1,1,2), with runs (1), (3), (1,1), (2), (1,1), (2), of which 4 are distinct, so a(3310) = 4.
		

Crossrefs

Counting not necessarily distinct runs gives A124767.
Using binary expansions instead of standard compositions gives A297770.
Positions of first appearances are A351015.
A005811 counts runs in binary expansion.
A011782 counts integer compositions.
A044813 lists numbers whose binary expansion has distinct run-lengths.
A085207 represents concatenation of standard compositions, reverse A085208.
A333489 ranks anti-runs, complement A348612.
A345167 ranks alternating compositions, counted by A025047.
A351204 counts partitions where every permutation has all distinct runs.
Counting words with all distinct runs:
- A351013 = compositions, for run-lengths A329739, ranked by A351290.
- A351016 = binary words, for run-lengths A351017.
- A351018 = binary expansions, for run-lengths A032020, ranked by A175413.
- A351200 = patterns, for run-lengths A351292.
- A351202 = permutations of prime factors.
Selected statistics of standard compositions:
- Length is A000120.
- Sum is A070939.
- Heinz number is A333219.
- Number of distinct parts is A334028.
Selected classes of standard compositions:
- Partitions are A114994, strict A333256.
- Multisets are A225620, strict A333255.
- Strict compositions are A233564.
- Constant compositions are A272919.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Table[Length[Union[Split[stc[n]]]],{n,0,100}]

A344619 The a(n)-th composition in standard order (A066099) has alternating sum 0.

Original entry on oeis.org

0, 3, 10, 13, 15, 36, 41, 43, 46, 50, 53, 55, 58, 61, 63, 136, 145, 147, 150, 156, 162, 165, 167, 170, 173, 175, 180, 185, 187, 190, 196, 201, 203, 206, 210, 213, 215, 218, 221, 223, 228, 233, 235, 238, 242, 245, 247, 250, 253, 255, 528, 545, 547, 550, 556, 568
Offset: 1

Views

Author

Gus Wiseman, Jun 03 2021

Keywords

Comments

The alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^(i-1) y_i.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The sequence of terms together with the corresponding compositions begins:
    0: ()
    3: (1,1)
   10: (2,2)
   13: (1,2,1)
   15: (1,1,1,1)
   36: (3,3)
   41: (2,3,1)
   43: (2,2,1,1)
   46: (2,1,1,2)
   50: (1,3,2)
   53: (1,2,2,1)
   55: (1,2,1,1,1)
   58: (1,1,2,2)
   61: (1,1,1,2,1)
   63: (1,1,1,1,1,1)
  136: (4,4)
  145: (3,4,1)
  147: (3,3,1,1)
  150: (3,2,1,2)
  156: (3,1,1,3)
		

Crossrefs

The version for Heinz numbers of partitions is A000290, counted by A000041.
These are the positions of zeros in A344618.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A116406 counts compositions with alternating sum >= 0.
A124754 gives the alternating sum of standard compositions.
A316524 is the alternating sum of the prime indices of n.
A344604 counts wiggly compositions with twins.
A344610 counts partitions by sum and positive reverse-alternating sum.
A344611 counts partitions of 2n with reverse-alternating sum >= 0.
A344616 gives the alternating sum of reversed prime indices.
All of the following pertain to compositions in standard order:
- The length is A000120.
- Converting to reversed ranking gives A059893.
- The rows are A066099.
- The sum is A070939.
- The runs are counted by A124767.
- The reversed version is A228351.
- Strict compositions are ranked by A233564.
- Constant compositions are ranked by A272919.
- The Heinz number is A333219.
- Anti-run compositions are ranked by A333489.

Programs

  • Mathematica
    ats[y_]:=Sum[(-1)^(i-1)*y[[i]],{i,Length[y]}];
    stc[n_]:=Reverse[Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]]
    Select[Range[0,100],ats[stc[#]]==0&]

A345168 Numbers k such that the k-th composition in standard order is not alternating.

Original entry on oeis.org

3, 7, 10, 11, 14, 15, 19, 21, 23, 26, 27, 28, 29, 30, 31, 35, 36, 37, 39, 42, 43, 46, 47, 51, 52, 53, 55, 56, 57, 58, 59, 60, 61, 62, 63, 67, 69, 71, 73, 74, 75, 78, 79, 83, 84, 85, 86, 87, 90, 91, 92, 93, 94, 95, 99, 100, 101, 103, 104, 105, 106, 107, 110
Offset: 1

Views

Author

Gus Wiseman, Jun 15 2021

Keywords

Comments

The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.
A sequence is alternating if it is alternately strictly increasing and strictly decreasing, starting with either. For example, the partition (3,2,2,2,1) has no alternating permutations, even though it does have the anti-run permutations (2,3,2,1,2) and (2,1,2,3,2).

Examples

			The sequence of terms together with their binary indices begins:
     3: (1,1)          35: (4,1,1)        59: (1,1,2,1,1)
     7: (1,1,1)        36: (3,3)          60: (1,1,1,3)
    10: (2,2)          37: (3,2,1)        61: (1,1,1,2,1)
    11: (2,1,1)        39: (3,1,1,1)      62: (1,1,1,1,2)
    14: (1,1,2)        42: (2,2,2)        63: (1,1,1,1,1,1)
    15: (1,1,1,1)      43: (2,2,1,1)      67: (5,1,1)
    19: (3,1,1)        46: (2,1,1,2)      69: (4,2,1)
    21: (2,2,1)        47: (2,1,1,1,1)    71: (4,1,1,1)
    23: (2,1,1,1)      51: (1,3,1,1)      73: (3,3,1)
    26: (1,2,2)        52: (1,2,3)        74: (3,2,2)
    27: (1,2,1,1)      53: (1,2,2,1)      75: (3,2,1,1)
    28: (1,1,3)        55: (1,2,1,1,1)    78: (3,1,1,2)
    29: (1,1,2,1)      56: (1,1,4)        79: (3,1,1,1,1)
    30: (1,1,1,2)      57: (1,1,3,1)      83: (2,3,1,1)
    31: (1,1,1,1,1)    58: (1,1,2,2)      84: (2,2,3)
		

Crossrefs

The complement is A345167.
These compositions are counted by A345192.
A001250 counts alternating permutations, complement A348615.
A003242 counts anti-run compositions.
A025047 counts alternating or wiggly compositions, directed A025048, A025049.
A344604 counts alternating compositions with twins.
A345194 counts alternating patterns (with twins: A344605).
A345164 counts alternating permutations of prime indices (with twins: A344606).
A345165 counts partitions without a alternating permutation, ranked by A345171.
A345170 counts partitions with a alternating permutation, ranked by A345172.
A348610 counts alternating ordered factorizations, complement A348613.
Statistics of standard compositions:
- Length is A000120.
- Constant runs are A124767.
- Heinz number is A333219.
- Number of maximal anti-runs is A333381.
- Runs-resistance is A333628.
- Number of distinct parts is A334028.
Classes of standard compositions:
- Weakly decreasing compositions (partitions) are A114994.
- Weakly increasing compositions (multisets) are A225620.
- Strict compositions are A233564.
- Constant compositions are A272919.
- Anti-run compositions are A333489.
- Non-anti-run compositions are A348612.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    wigQ[y_]:=Or[Length[y]==0,Length[Split[y]]==Length[y]&&Length[Split[Sign[Differences[y]]]]==Length[y]-1];
    Select[Range[0,100],Not@*wigQ@*stc]

A333227 Numbers k such that the k-th composition in standard order is pairwise coprime, where a singleton is not coprime unless it is (1).

Original entry on oeis.org

1, 3, 5, 6, 7, 9, 11, 12, 13, 14, 15, 17, 18, 19, 20, 23, 24, 25, 27, 28, 29, 30, 31, 33, 35, 37, 38, 39, 41, 44, 47, 48, 49, 50, 51, 52, 55, 56, 57, 59, 60, 61, 62, 63, 65, 66, 67, 68, 71, 72, 75, 77, 78, 79, 80, 83, 89, 92, 95, 96, 97, 99, 101, 102, 103, 105
Offset: 1

Views

Author

Gus Wiseman, Mar 27 2020

Keywords

Comments

This is the definition used for CoprimeQ in Mathematica.
The k-th composition in standard order (row k of A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again.

Examples

			The sequence together with the corresponding compositions begins:
   1: (1)          27: (1,2,1,1)      55: (1,2,1,1,1)
   3: (1,1)        28: (1,1,3)        56: (1,1,4)
   5: (2,1)        29: (1,1,2,1)      57: (1,1,3,1)
   6: (1,2)        30: (1,1,1,2)      59: (1,1,2,1,1)
   7: (1,1,1)      31: (1,1,1,1,1)    60: (1,1,1,3)
   9: (3,1)        33: (5,1)          61: (1,1,1,2,1)
  11: (2,1,1)      35: (4,1,1)        62: (1,1,1,1,2)
  12: (1,3)        37: (3,2,1)        63: (1,1,1,1,1,1)
  13: (1,2,1)      38: (3,1,2)        65: (6,1)
  14: (1,1,2)      39: (3,1,1,1)      66: (5,2)
  15: (1,1,1,1)    41: (2,3,1)        67: (5,1,1)
  17: (4,1)        44: (2,1,3)        68: (4,3)
  18: (3,2)        47: (2,1,1,1,1)    71: (4,1,1,1)
  19: (3,1,1)      48: (1,5)          72: (3,4)
  20: (2,3)        49: (1,4,1)        75: (3,2,1,1)
  23: (2,1,1,1)    50: (1,3,2)        77: (3,1,2,1)
  24: (1,4)        51: (1,3,1,1)      78: (3,1,1,2)
  25: (1,3,1)      52: (1,2,3)        79: (3,1,1,1,1)
		

Crossrefs

A different ranking of the same compositions is A326675.
Ignoring repeated parts gives A333228.
Let q(k) be the k-th composition in standard order:
- The terms of q(k) are row k of A066099.
- The sum of q(k) is A070939(k).
- The product of q(k) is A124758(k).
- q(k) has A124767(k) runs and A333381(k) anti-runs.
- The GCD of q(k) is A326674(k).
- The Heinz number of q(k) is A333219(k).
- The LCM of q(k) is A333226(k).
Coprime or singleton sets are ranked by A087087.
Strict compositions are ranked by A233564.
Constant compositions are ranked by A272919.
Relatively prime compositions appear to be ranked by A291166.
Normal compositions are ranked by A333217.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Select[Range[0,120],CoprimeQ@@stc[#]&]

A333228 Numbers k such that the distinct parts of the k-th composition in standard order (A066099) are pairwise coprime, where a singleton is not considered coprime unless it is (1).

Original entry on oeis.org

1, 3, 5, 6, 7, 9, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 35, 37, 38, 39, 41, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80
Offset: 1

Views

Author

Gus Wiseman, May 28 2020

Keywords

Comments

First differs from A291166 in lacking 69, which corresponds to the composition (4,2,1).
We use the Mathematica definition for CoprimeQ, so a singleton is not considered coprime unless it is (1).
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The sequence together with the corresponding compositions begins:
   1: (1)          21: (2,2,1)        39: (3,1,1,1)
   3: (1,1)        22: (2,1,2)        41: (2,3,1)
   5: (2,1)        23: (2,1,1,1)      43: (2,2,1,1)
   6: (1,2)        24: (1,4)          44: (2,1,3)
   7: (1,1,1)      25: (1,3,1)        45: (2,1,2,1)
   9: (3,1)        26: (1,2,2)        46: (2,1,1,2)
  11: (2,1,1)      27: (1,2,1,1)      47: (2,1,1,1,1)
  12: (1,3)        28: (1,1,3)        48: (1,5)
  13: (1,2,1)      29: (1,1,2,1)      49: (1,4,1)
  14: (1,1,2)      30: (1,1,1,2)      50: (1,3,2)
  15: (1,1,1,1)    31: (1,1,1,1,1)    51: (1,3,1,1)
  17: (4,1)        33: (5,1)          52: (1,2,3)
  18: (3,2)        35: (4,1,1)        53: (1,2,2,1)
  19: (3,1,1)      37: (3,2,1)        54: (1,2,1,2)
  20: (2,3)        38: (3,1,2)        55: (1,2,1,1,1)
		

Crossrefs

Pairwise coprime or singleton partitions are A051424.
Coprime or singleton sets are ranked by A087087.
The version for relatively prime instead of coprime appears to be A291166.
Numbers whose binary indices are pairwise coprime are A326675.
Coprime partitions are counted by A327516.
Not ignoring repeated parts gives A333227.
The complement is A335238.
All of the following pertain to compositions in standard order (A066099):
- Length is A000120.
- Sum is A070939.
- Product is A124758.
- Reverse is A228351
- GCD is A326674.
- Heinz number is A333219.
- LCM is A333226.
- Number of distinct parts is A334028.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Select[Range[0,120],CoprimeQ@@Union[stc[#]]&]

A333766 Maximum part of the n-th composition in standard order. a(0) = 0.

Original entry on oeis.org

0, 1, 2, 1, 3, 2, 2, 1, 4, 3, 2, 2, 3, 2, 2, 1, 5, 4, 3, 3, 3, 2, 2, 2, 4, 3, 2, 2, 3, 2, 2, 1, 6, 5, 4, 4, 3, 3, 3, 3, 4, 3, 2, 2, 3, 2, 2, 2, 5, 4, 3, 3, 3, 2, 2, 2, 4, 3, 2, 2, 3, 2, 2, 1, 7, 6, 5, 5, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 5, 4, 3, 3, 3, 2, 2
Offset: 0

Views

Author

Gus Wiseman, Apr 05 2020

Keywords

Comments

One plus the longest run of 0's in the binary expansion of n.
A composition of n is a finite sequence of positive integers summing to n. The k-th composition in standard order (row k of A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The 100th composition in standard order is (1,3,3), so a(100) = 3.
		

Crossrefs

Positions of ones are A000225.
Positions of terms <= 2 are A003754.
The version for prime indices is A061395.
Positions of terms > 1 are A062289.
Positions of first appearances are A131577.
The minimum part is given by A333768.
All of the following pertain to compositions in standard order (A066099):
- Length is A000120.
- Compositions without 1's are A022340.
- Sum is A070939.
- Product is A124758.
- Runs are counted by A124767.
- Strict compositions are A233564.
- Constant compositions are A272919.
- Runs-resistance is A333628.
- Weakly decreasing compositions are A114994.
- Weakly increasing compositions are A225620.
- Strictly decreasing compositions are A333255.
- Strictly increasing compositions are A333256.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Table[If[n==0,0,Max@@stc[n]],{n,0,100}]

Formula

For n > 0, a(n) = A087117(n) + 1.

A353849 Number of distinct positive run-sums of the n-th composition in standard order.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 2, 2, 2, 1, 3, 3, 1, 2, 3, 1, 2, 3, 2, 1, 2, 2, 2, 3, 3, 3, 2, 2, 3, 2, 3, 2, 1, 1, 3, 2, 1, 1, 2, 2, 2, 2, 3, 3, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 2, 2, 3
Offset: 0

Views

Author

Gus Wiseman, May 30 2022

Keywords

Comments

Every sequence can be uniquely split into a sequence of non-overlapping runs. For example, the runs of (2,2,1,1,1,3,2,2) are ((2,2),(1,1,1),(3),(2,2)), with sums (4,3,3,4).
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			Composition 462903 in standard order is (1,1,4,7,1,2,1,1,1), with run-sums (2,4,7,1,2,3), of which a(462903) = 5 are distinct.
		

Crossrefs

Counting repeated runs also gives A124767.
Positions of first appearances are A246534.
For distinct runs instead of run-sums we have A351014 (firsts A351015).
A version for partitions is A353835, weak A353861.
Positions of 1's are A353848, counted by A353851.
The version for binary expansion is A353929 (firsts A353930).
The run-sums themselves are listed by A353932, with A353849 distinct terms.
For distinct run-lengths instead of run-sums we have A354579.
A005811 counts runs in binary expansion.
A066099 lists compositions in standard order.
A165413 counts distinct run-lengths in binary expansion.
A297770 counts distinct runs in binary expansion, firsts A350952.
A353847 represents the run-sum transformation for compositions.
A353853-A353859 pertain to composition run-sum trajectory.
Selected statistics of standard compositions:
- Length is A000120.
- Sum is A070939.
- Heinz number is A333219.
- Number of distinct parts is A334028.
Selected classes of standard compositions:
- Partitions are A114994, strict A333256.
- Multisets are A225620, strict A333255.
- Strict compositions are A233564.
- Constant compositions are A272919.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Table[Length[Union[Total/@Split[stc[n]]]],{n,0,100}]

A334435 Heinz numbers of all reversed integer partitions sorted first by sum, then by length, and finally reverse-lexicographically.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 8, 7, 9, 10, 12, 16, 11, 15, 14, 18, 20, 24, 32, 13, 25, 21, 22, 27, 30, 28, 36, 40, 48, 64, 17, 35, 33, 26, 45, 50, 42, 44, 54, 60, 56, 72, 80, 96, 128, 19, 49, 55, 39, 34, 75, 63, 70, 66, 52, 81, 90, 100, 84, 88, 108, 120, 112, 144, 160, 192, 256
Offset: 0

Views

Author

Gus Wiseman, May 02 2020

Keywords

Comments

First differs from A334433 at a(75) = 99, A334433(75) = 98.
First differs from A334436 at a(22) = 22, A334436(22) = 27.
A permutation of the positive integers.
Reversed integer partitions are finite weakly increasing sequences of positive integers.
This is the Abramowitz-Stegun ordering of reversed partitions (A185974) except that the finer order is reverse-lexicographic instead of lexicographic. The version for non-reversed partitions is A334438.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
As a triangle with row lengths A000041, the sequence starts {{1},{2},{3,4},{5,6,8},...}, so offset is 0.

Examples

			The sequence of terms together with their prime indices begins:
    1: {}            32: {1,1,1,1,1}       42: {1,2,4}
    2: {1}           13: {6}               44: {1,1,5}
    3: {2}           25: {3,3}             54: {1,2,2,2}
    4: {1,1}         21: {2,4}             60: {1,1,2,3}
    5: {3}           22: {1,5}             56: {1,1,1,4}
    6: {1,2}         27: {2,2,2}           72: {1,1,1,2,2}
    8: {1,1,1}       30: {1,2,3}           80: {1,1,1,1,3}
    7: {4}           28: {1,1,4}           96: {1,1,1,1,1,2}
    9: {2,2}         36: {1,1,2,2}        128: {1,1,1,1,1,1,1}
   10: {1,3}         40: {1,1,1,3}         19: {8}
   12: {1,1,2}       48: {1,1,1,1,2}       49: {4,4}
   16: {1,1,1,1}     64: {1,1,1,1,1,1}     55: {3,5}
   11: {5}           17: {7}               39: {2,6}
   15: {2,3}         35: {3,4}             34: {1,7}
   14: {1,4}         33: {2,5}             75: {2,3,3}
   18: {1,2,2}       26: {1,6}             63: {2,2,4}
   20: {1,1,3}       45: {2,2,3}           70: {1,3,4}
   24: {1,1,1,2}     50: {1,3,3}           66: {1,2,5}
Triangle begins:
   1
   2
   3   4
   5   6   8
   7   9  10  12  16
  11  15  14  18  20  24  32
  13  25  21  22  27  30  28  36  40  48  64
  17  35  33  26  45  50  42  44  54  60  56  72  80  96 128
This corresponds to the following tetrangle:
                  0
                 (1)
               (2)(11)
             (3)(12)(111)
        (4)(22)(13)(112)(1111)
  (5)(23)(14)(122)(113)(1112)(11111)
		

Crossrefs

Row lengths are A000041.
The dual version (sum/length/lex) is A185974.
Compositions under the same order are A296774 (triangle).
The constructive version is A334302.
Ignoring length gives A334436.
The version for non-reversed partitions is A334438.
Partitions in this order (sum/length/revlex) are A334439.
Lexicographically ordered reversed partitions are A026791.
Reversed partitions in Abramowitz-Stegun (sum/length/lex) order are A036036.
Partitions in increasing-length colex order (sum/length/colex) are A036037.
Reverse-lexicographically ordered partitions are A080577.
Sorting reversed partitions by Heinz number gives A112798.
Graded lexicographically ordered partitions are A193073.
Partitions in colexicographic (sum/colex) order are A211992.
Graded Heinz numbers are given by A215366.
Sorting partitions by Heinz number gives A296150.

Programs

  • Mathematica
    revlensort[f_,c_]:=If[Length[f]!=Length[c],Length[f]
    				

Formula

A001222(a(n)) = A036043(n).

A124758 Product of the parts of the compositions in standard order.

Original entry on oeis.org

1, 1, 2, 1, 3, 2, 2, 1, 4, 3, 4, 2, 3, 2, 2, 1, 5, 4, 6, 3, 6, 4, 4, 2, 4, 3, 4, 2, 3, 2, 2, 1, 6, 5, 8, 4, 9, 6, 6, 3, 8, 6, 8, 4, 6, 4, 4, 2, 5, 4, 6, 3, 6, 4, 4, 2, 4, 3, 4, 2, 3, 2, 2, 1, 7, 6, 10, 5, 12, 8, 8, 4, 12, 9, 12, 6, 9, 6, 6, 3, 10, 8, 12, 6, 12, 8, 8, 4, 8, 6, 8, 4, 6, 4, 4, 2, 6, 5, 8, 4, 9, 6
Offset: 0

Views

Author

Keywords

Comments

The standard order of compositions is given by A066099.
A composition of n is a finite sequence of positive integers summing to n. The k-th composition in standard order (row k of A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. - Gus Wiseman, Apr 03 2020

Examples

			Composition number 11 is 2,1,1; 2*1*1 = 2, so a(11) = 2.
The table starts:
  1
  1
  2 1
  3 2 2 1
  4 3 4 2 3 2 2 1
  5 4 6 3 6 4 4 2 4 3 4 2 3 2 2 1
The 146-th composition in standard order is (3,3,2), with product 18, so a(146) = 18. - _Gus Wiseman_, Apr 03 2020
		

Crossrefs

Cf. A066099, A118851, A011782 (row lengths), A001906 (row sums).
The lengths of standard compositions are given by A000120.
The version for prime indices is A003963.
The version for binary indices is A096111.
Taking the sum instead of product gives A070939.
The sum of binary indices is A029931.
The sum of prime indices is A056239.
Taking GCD instead of product gives A326674.
Positions of first appearances are A331579.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Table[Times@@stc[n],{n,0,100}] (* Gus Wiseman, Apr 03 2020 *)

Formula

For a composition b(1),...,b(k), a(n) = Product_{i=1}^k b(i).
a(A164894(n)) = a(A246534(n)) = n!. - Gus Wiseman, Apr 03 2020
a(A233249(n)) = a(A333220(n)) = A003963(n). - Gus Wiseman, Apr 03 2020
From Mikhail Kurkov, Jul 11 2021: (Start)
Some conjectures:
a(2n+1) = a(n) for n >= 0.
a(2n) = (1 + 1/A001511(n))*a(n) = 2*a(n) + a(n - 2^f(n)) - a(2n - 2^f(n)) for n > 0 with a(0)=1 where f(n) = A007814(n).
From the 1st formula for a(2n) we get a(4n+2) = 2*a(n), a(4n) = 2*a(2n) - a(n).
Sum_{k=0..2^n - 1} a(k) = A001519(n+1) for n >= 0.
a((4^n - 1)/3) = A011782(n) for n >= 0.
a(2^m*(2^n - 1)) = m + 1 for n > 0, m >= 0. (End)
Previous Showing 11-20 of 75 results. Next