cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 26 results. Next

A352089 Tribonacci-Niven numbers: numbers that are divisible by the number of terms in their minimal (or greedy) representation in terms of the tribonacci numbers (A278038).

Original entry on oeis.org

1, 2, 4, 6, 7, 8, 12, 13, 14, 18, 20, 21, 24, 26, 27, 28, 30, 33, 36, 39, 40, 44, 46, 48, 56, 60, 68, 69, 72, 75, 76, 80, 81, 82, 84, 87, 88, 90, 94, 96, 100, 108, 115, 116, 120, 126, 128, 129, 132, 135, 136, 138, 140, 149, 150, 156, 162, 168, 174, 176, 177, 180
Offset: 1

Views

Author

Amiram Eldar, Mar 04 2022

Keywords

Comments

Numbers k such that A278043(k) | k.
The positive tribonacci numbers (A000073) are all terms.
If k = A000073(A042964(m)) is an odd tribonacci number, then k+1 is a term.
Ray (2005) and Ray and Cooper (2006) called these numbers "3-Zeckendorf Niven numbers" and proved that their asymptotic density is 0. - Amiram Eldar, Sep 06 2024

Examples

			6 is a term since its minimal tribonacci representation, A278038(6) = 110, has A278043(6) = 2 1's and 6 is divisible by 2.
		

References

  • Andrew B. Ray, On the natural density of the k-Zeckendorf Niven numbers, Ph.D. dissertation, Central Missouri State University, 2005.

Crossrefs

Programs

  • Mathematica
    t[1] = 1; t[2] = 2; t[3] = 4; t[n_] := t[n] = t[n - 1] + t[n - 2] + t[n - 3]; q[n_] := Module[{s = {}, m = n, k}, While[m > 0, k = 1; While[t[k] <= m, k++]; k--; AppendTo[s, k]; m -= t[k]; k = 1]; Divisible[n, DigitCount[Total[2^(s - 1)], 2, 1]]]; Select[Range[180], q]

A352107 Lazy-tribonacci-Niven numbers: numbers that are divisible by the number of terms in their maximal (or lazy) representation in terms of the tribonacci numbers (A352103).

Original entry on oeis.org

1, 2, 4, 6, 8, 12, 18, 20, 21, 24, 28, 30, 33, 36, 39, 40, 48, 50, 56, 60, 68, 70, 72, 75, 76, 80, 90, 96, 100, 108, 115, 116, 120, 135, 136, 140, 150, 155, 156, 160, 162, 168, 175, 176, 177, 180, 184, 185, 188, 195, 198, 204, 205, 208, 215, 216, 225, 231, 260
Offset: 1

Views

Author

Amiram Eldar, Mar 05 2022

Keywords

Comments

Numbers k such that A352104(k) | k.

Examples

			6 is a term since its maximal tribonacci representation, A352103(6) = 110, has A352104(6) = 2 1's and 6 is divisible by 2.
		

Crossrefs

Programs

  • Mathematica
    t[1] = 1; t[2] = 2; t[3] = 4; t[n_] := t[n] = t[n - 1] + t[n - 2] + t[n - 3]; trib[n_] := Module[{s = {}, m = n, k}, While[m > 0, k = 1; While[t[k] <= m, k++]; k--; AppendTo[s, k]; m -= t[k]; k = 1]; IntegerDigits[Total[2^(s - 1)], 2]]; q[n_] := Module[{v = trib[n]}, nv = Length[v]; i = 1; While[i <= nv - 3, If[v[[i ;; i + 3]] == {1, 0, 0, 0}, v[[i ;; i + 3]] = {0, 1, 1, 1}; If[i > 3, i -= 4]]; i++]; i = Position[v, _?(# > 0 &)]; If[i == {}, False, Divisible[n, Total[v[[i[[1, 1]] ;; -1]]]]]]; Select[Range[300], q]

A339215 Primorial-base self numbers: numbers not of the form k + A276150(k).

Original entry on oeis.org

1, 4, 11, 18, 25, 32, 35, 42, 49, 56, 63, 66, 73, 80, 87, 94, 97, 104, 111, 118, 125, 128, 135, 142, 149, 156, 159, 166, 173, 180, 187, 190, 197, 204, 229, 236, 243, 246, 253, 260, 267, 274, 277, 284, 291, 298, 305, 308, 315, 322, 329, 336, 339, 346, 353, 360
Offset: 1

Views

Author

Amiram Eldar, Nov 27 2020

Keywords

Comments

Analogous to self numbers (A003052) using primorial base representation (A049345) instead of decimal expansion.
The numbers of terms that do not exceed 10^k, for k = 0, 1, ..., are 1, 2, 17, 150, 1469, 14669, 146680, 1466723, 14667162, 146671527, 1466715137, ... . Apparently, the asymptotic density of this sequence exists and equals 0.1466715... . - Amiram Eldar, Aug 08 2025

References

  • József Sándor and Borislav Crstici, Handbook of Number theory II, Kluwer Academic Publishers, 2004, Chapter 4, pp. 384-386.

Crossrefs

Programs

  • Mathematica
    max = 4; bases = Prime@Range[max, 1, -1]; m = Times @@ bases; s[n_] := n + Plus @@ IntegerDigits[n, MixedRadix[bases]]; Complement[Range[m], Array[s, m]]

A352320 Pell-Niven numbers: numbers that are divisible by the sum of the digits in their minimal (or greedy) representation in terms of the Pell numbers (A317204).

Original entry on oeis.org

1, 2, 4, 5, 6, 9, 10, 12, 14, 15, 18, 20, 24, 28, 29, 30, 33, 34, 36, 39, 40, 42, 44, 48, 50, 58, 60, 63, 64, 68, 70, 72, 82, 84, 87, 88, 90, 92, 96, 110, 111, 112, 115, 116, 120, 125, 126, 135, 140, 141, 144, 155, 164, 165, 168, 169, 170, 174, 180, 183, 184, 186
Offset: 1

Views

Author

Amiram Eldar, Mar 12 2022

Keywords

Comments

Numbers k such that A265744(k) | k.
All the positive Pell numbers (A000129) are terms.

Examples

			6 is a term since its minimal Pell representation, A317204(6) = 101, has A265744(6) = 2 1's and 6 is divisible by 2.
		

Crossrefs

Programs

  • Mathematica
    pell[1] = 1; pell[2] = 2; pell[n_] := pell[n] = 2*pell[n - 1] + pell[n - 2]; q[n_] := Module[{s = {}, m = n, k}, While[m > 0, k = 1; While[pell[k] <= m, k++]; k--; AppendTo[s, k]; m -= pell[k]; k = 1]; Divisible[n, Plus @@ IntegerDigits[ Total[3^(s - 1)], 3]]]; Select[Range[200], q]

A352342 Lazy-Pell-Niven numbers: numbers that are divisible by the sum of the digits in their maximal (or lazy) representation in terms of the Pell numbers (A352339).

Original entry on oeis.org

1, 2, 4, 9, 12, 15, 20, 24, 25, 28, 30, 35, 40, 48, 50, 54, 56, 60, 63, 64, 70, 72, 78, 84, 88, 91, 96, 102, 115, 120, 136, 144, 160, 162, 168, 180, 182, 184, 189, 207, 209, 210, 216, 217, 234, 246, 256, 261, 270, 304, 306, 308, 315, 320, 328, 333, 350, 352, 357
Offset: 1

Views

Author

Amiram Eldar, Mar 12 2022

Keywords

Comments

Numbers k such that A352340(k) | k.

Examples

			4 is a term since its maximal Pell representation, A352339(4) = 11, has the sum of digits A352340(4) = 1+1 = 2 and 4 is divisible by 2.
		

Crossrefs

Programs

  • Mathematica
    pell[1] = 1; pell[2] = 2; pell[n_] := pell[n] = 2*pell[n - 1] + pell[n - 2]; pellp[n_] := Module[{s = {}, m = n, k}, While[m > 0, k = 1; While[pell[k] <= m, k++]; k--; AppendTo[s, k]; m -= pell[k]; k = 1]; IntegerDigits[Total[3^(s - 1)], 3]]; q[n_] := Module[{v = pellp[n]}, nv = Length[v]; i = 1; While[i <= nv - 2, If[v[[i]] > 0 && v[[i + 1]] == 0 && v[[i + 2]] < 2, v[[i ;; i + 2]] += {-1, 2, 1}; If[i > 2, i -= 3]]; i++]; i = Position[v, _?(# > 0 &)]; Divisible[n, Plus @@ v[[i[[1, 1]] ;; -1]]]]; Select[Range[300], q]

A352508 Catalan-Niven numbers: numbers that are divisible by the sum of the digits in their representation in terms of the Catalan numbers (A014418).

Original entry on oeis.org

1, 2, 4, 5, 6, 9, 10, 12, 14, 16, 18, 21, 24, 28, 30, 32, 33, 40, 42, 44, 45, 48, 55, 56, 57, 60, 65, 72, 78, 80, 84, 88, 95, 100, 105, 112, 126, 128, 130, 132, 134, 135, 138, 140, 144, 145, 146, 147, 152, 155, 156, 168, 170, 174, 180, 184, 185, 195, 210, 216
Offset: 1

Views

Author

Amiram Eldar, Mar 19 2022

Keywords

Comments

Numbers k such that A014420(k) | k.
All the Catalan numbers (A000108) are terms.
If k is an odd Catalan number (A038003), then k+1 is a term.

Examples

			4 is a term since its Catalan representation, A014418(4) = 20, has the sum of digits A014420(4) = 2 + 0 = 2 and 4 is divisible by 2.
9 is a term since its Catalan representation, A014418(9) = 120, has the sum of digits A014420(9) = 1 + 2 + 0 = 3 and 9 is divisible by 3.
		

Crossrefs

Programs

  • Mathematica
    c[n_] := c[n] = CatalanNumber[n]; q[n_] := Module[{s = {}, m = n, i}, While[m > 0, i = 1; While[c[i] <= m, i++]; i--; m -= c[i]; AppendTo[s, i]]; Divisible[n, Plus @@ IntegerDigits[Total[4^(s - 1)], 4]]]; Select[Range[216], q]

A358977 Numbers that are coprime to the sum of their primorial base digits (A276150).

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 26, 29, 30, 31, 34, 35, 37, 38, 39, 41, 43, 46, 47, 49, 53, 54, 55, 57, 58, 59, 61, 62, 63, 67, 69, 71, 73, 74, 78, 79, 81, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97, 98, 101, 102, 103, 106, 107, 109, 110
Offset: 1

Views

Author

Amiram Eldar, Dec 07 2022

Keywords

Comments

Numbers k such that gcd(k, A276150(k)) = 1.
The primorial numbers (A002110) are terms. These are also the only primorial base Niven numbers (A333426) in this sequence.
Includes all the prime numbers.
The numbers of terms not exceeding 10^k, for k = 1, 2, ..., are 7, 59, 603, 6047, 60861, 608163, 6079048, 60789541, 607847981, 6080015681... . Conjecture: The asymptotic density of this sequence exists and equals 6/Pi^2 = 0.607927... (A059956), the same as the density of A094387.

Examples

			3 is a term since A276150(3) = 2, and gcd(3, 2) = 1.
		

Crossrefs

Subsequences: A000040, A002110.
Similar sequences: A094387, A339076, A358975, A358976, A358978.

Programs

  • Mathematica
    With[{max = 4}, bases = Prime@Range[max, 1, -1]; nmax = Times @@ bases - 1; sumdig[n_] := Plus @@ IntegerDigits[n, MixedRadix[bases]]; Select[Range[nmax], CoprimeQ[#, sumdig[#]] &]]
  • PARI
    is(n) = {my(p=2, s=0, m=n, r); while(m>0, r = m%p; s+=r; m\=p; p = nextprime(p+1)); gcd(n, s)==1; }

A364216 Jacobsthal-Niven numbers: numbers that are divisible by the sum of the digits in their Jacobsthal representation (A280049).

Original entry on oeis.org

1, 2, 3, 4, 6, 8, 9, 11, 12, 14, 15, 16, 20, 22, 24, 27, 28, 32, 33, 36, 40, 42, 43, 44, 45, 46, 48, 51, 52, 54, 56, 57, 60, 68, 72, 75, 76, 84, 86, 87, 88, 92, 93, 95, 96, 99, 100, 104, 105, 108, 112, 115, 117, 120, 125, 126, 128, 129, 132, 135, 136, 138, 140
Offset: 1

Views

Author

Amiram Eldar, Jul 14 2023

Keywords

Comments

Numbers k such that A364215(k) | k.
A007583 is a subsequence since A364215(A007583(n)) = 1 for n >= 0.

Crossrefs

Programs

  • Mathematica
    seq[kmax_] := Module[{m = 1, s = {}}, Do[If[Divisible[k, DigitCount[m, 2, 1]], AppendTo[s, k]]; While[m++; OddQ[IntegerExponent[m, 2]]], {k, 1, kmax}]; s]; seq[140]
  • PARI
    lista(kmax) = {my(m = 1); for(k = 1, kmax, if( !(k % sumdigits(m, 2)), print1(k,", ")); until(valuation(m, 2)%2 == 0, m++));}

A373833 a(n) = gcd(n, A276150(n)), where A276150 is the digit sum in the primorial base.

Original entry on oeis.org

0, 1, 1, 1, 2, 1, 1, 1, 2, 3, 1, 1, 2, 1, 1, 1, 4, 1, 3, 1, 4, 1, 1, 1, 4, 5, 1, 3, 2, 1, 1, 1, 2, 3, 1, 1, 2, 1, 1, 1, 4, 1, 3, 1, 4, 5, 1, 1, 4, 1, 5, 3, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 4, 5, 3, 1, 4, 1, 5, 1, 4, 1, 1, 3, 2, 7, 1, 1, 2, 1, 1, 1, 6, 1, 1, 1, 8, 1, 3, 1, 4, 1, 1, 1, 4, 1, 1, 3, 2, 1, 1, 1, 2, 7
Offset: 0

Views

Author

Antti Karttunen, Jun 19 2024

Keywords

Crossrefs

Cf. A049345, A276086, A276150, A333426 [positive k for which a(k) = A276150(k)], A358977 (indices of 1's), A373832, A373834, A373835, A373838, A373839 (indices of multiples of 3).

Programs

  • PARI
    A276150(n) = { my(s=0, p=2, d); while(n, d = (n%p); s += d; n = (n-d)/p; p = nextprime(1+p)); (s); };
    A373833(n) = gcd(n, A276150(n));

Formula

a(n) = A373835(A276086(n)).
For n >= 1, a(n) = gcd(A276150(n), A373832(n)).

A364379 Greedy Jacobsthal-Niven numbers: numbers that are divisible by the sum of the digits in their representation in Jacobsthal greedy base (A265747).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 14, 15, 16, 20, 21, 22, 24, 26, 27, 28, 32, 33, 36, 40, 42, 43, 44, 45, 46, 48, 51, 52, 54, 56, 57, 60, 64, 68, 69, 72, 75, 76, 80, 84, 85, 86, 87, 88, 90, 92, 93, 96, 99, 100, 104, 105, 106, 108, 111, 112, 115, 116, 117, 120
Offset: 1

Views

Author

Amiram Eldar, Jul 21 2023

Keywords

Comments

Numbers k such that A265745(k) | k.
The positive Jacobsthal numbers, A001045(n) for n >= 1, are terms since their representation in Jacobsthal greedy base is one 1 followed by n-1 0's, so A265745(A001045(n)) = 1 divides A001045(n).

Crossrefs

Programs

  • Mathematica
    greedyJacobNivenQ[n_] := Divisible[n, A265745[n]]; Select[Range[120], greedyJacobNivenQ] (* using A265745[n] *)
  • PARI
    isA364379(n) = !(n % A265745(n)); \\ using A265745(n)
Previous Showing 11-20 of 26 results. Next