cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A340710 Decimal expansion of Product_{primes p == 2 (mod 5)} (p^2+1)/(p^2-1).

Original entry on oeis.org

1, 7, 5, 5, 1, 7, 3, 8, 4, 1, 1, 6, 8, 7, 3, 7, 7, 7, 6, 6, 0, 7, 4, 7, 2, 1, 2, 2, 8, 4, 0, 5, 2, 3, 7, 0, 1, 1, 1, 5, 1, 1, 8, 1, 3, 9, 4, 5, 5, 4, 3, 9, 9, 1, 5, 5, 8, 1, 7, 9, 0, 6, 2, 1, 6, 1, 7, 5, 6, 8, 6, 2, 1, 6, 4, 6, 4, 5, 1, 1, 9, 2, 7, 5, 9, 7, 9, 9, 0, 2, 4, 8, 5, 2, 5, 6, 3, 9, 7, 6, 9, 6, 3, 6, 8, 9, 5, 1, 6, 8, 2, 5, 3, 0, 2, 5, 1, 5, 1, 1
Offset: 1

Views

Author

Artur Jasinski, Jan 16 2021

Keywords

Examples

			1.7551738411687377766074721228405237...
		

Crossrefs

Programs

  • Mathematica
    (* Using Vaclav Kotesovec's function Z from A301430. *)
    $MaxExtraPrecision = 1000; digits = 121;
    digitize[c_] := RealDigits[Chop[N[c, digits]], 10, digits - 1][[1]];
    digitize[1/(Z[5, 2, 4]/Z[5, 2, 2]^2)]

Formula

D = Product_{primes p == 0 (mod 5)} (p^2+1)/(p^2-1) = 13/12.
E = Product_{primes p == 1 (mod 5)} (p^2+1)/(p^2-1) = A340629.
F = Product_{primes p == 2 (mod 5)} (p^2+1)/(p^2-1) = this constant.
G = Product_{primes p == 3 (mod 5)} (p^2+1)/(p^2-1) = A340711.
H = Product_{primes p == 4 (mod 5)} (p^2+1)/(p^2-1) = A340628.
D*E*F*G*H = 5/2.
E*F*G*H = 30/13.
D*E*H = sqrt(5)/2.
D*F*G = 13*sqrt(5)/12.
F*G = sqrt(5).
E*H = 6*sqrt(5)/13.
Formulas by Pascal Sebah, Jan 20 2021: (Start)
Let g = sqrt(Cl2(2*Pi/5)^2+Cl2(4*Pi/5)^2) = 1.0841621352693895..., where Cl2 is the Clausen function of order 2.
E = 15*sqrt(65)*g/(13*Pi^2).
H = 6*sqrt(13)*Pi^2/(195*g). (End)
Equals Sum_{q in A004616} 2^A001221(q)/q^2. - R. J. Mathar, Jan 27 2021

A210630 Decimal expansion of Product_{primes p == 1 (mod 8)} p*(p-8)/(p-4)^2.

Original entry on oeis.org

8, 8, 3, 0, 7, 1, 0, 0, 4, 7, 4, 3, 9, 4, 6, 6, 7, 1, 4, 1, 7, 8, 3, 4, 2, 9, 9, 0, 0, 3, 1, 0, 8, 5, 3, 4, 6, 7, 6, 8, 8, 8, 8, 3, 4, 8, 8, 0, 9, 7, 3, 4, 7, 0, 7, 1, 9, 2, 9, 5, 1, 5, 9, 3, 9, 5, 2, 1, 1, 9, 4, 6, 9, 9, 0, 6, 5, 6, 5, 9, 6, 8, 8, 5, 7, 9, 9, 3, 8, 3, 2, 8, 6, 0, 3, 7, 9, 1, 6, 4, 6, 3, 5, 8, 5, 2
Offset: 0

Views

Author

R. J. Mathar, Mar 25 2012

Keywords

Comments

Equals the product_{s>=2} of 1/zeta_(8,1)(s)^gamma(s), where gamma(s) = 16, 128, 888, 6144, 42256, 293912,... is an Euler transformation of the associated polynomial (1/x)(1/x-8)/(1/x-4)^2, and where the zeta_(m,n)(s) are the zeta prime modulo functions defined in section 3.3 of arXiv:1008.2547.
Note that Product_{k>=1} (8*k-7) * (8*k+1) / (8*k-3)^2 = Pi * 2^(9/2) * Gamma(1/4)^2 / Gamma(1/8)^4 = 0.290040073098462288674... - Vaclav Kotesovec, May 13 2020

Examples

			0.88307100474394667141783429900310853467688883488097347...
		

Crossrefs

Programs

  • Mathematica
    $MaxExtraPrecision = 1000; digits = 121;
    f[p_] := p*(p - 8)/(p - 4)^2;
    coefs = Rest[CoefficientList[Series[Log[f[1/x]], {x, 0, 1000}], x]];
    S[m_, n_, s_] := (t = 1; sums = 0; difs = 1; While[Abs[difs] > 10^(-digits - 5) || difs == 0, difs = (MoebiusMu[t]/t) * Log[If[s*t == 1, DirichletL[m, n, s*t], Sum[Zeta[s*t, j/m]*DirichletCharacter[m, n, j]^t, {j, 1, m}]/m^(s*t)]]; sums = sums + difs; t++]; sums);
    P[m_, n_, s_] := 1/EulerPhi[m] * Sum[Conjugate[DirichletCharacter[m, r, n]] * S[m, r, s], {r, 1, EulerPhi[m]}] + Sum[If[GCD[p, m] > 1 && Mod[p, m] == n, 1/p^s, 0], {p, 1, m}];
    m = 2; sump = 0; difp = 1; While[Abs[difp] > 10^(-digits - 5) || difp == 0, difp = coefs[[m]]*(P[8, 1, m] - 1/17^m); sump = sump + difp; m++];
    RealDigits[Chop[N[f[17]*Exp[sump], digits]], 10, digits - 1][[1]] (* Vaclav Kotesovec, Jan 16 2021 *)

Extensions

More digits from Ettahri article added by Vaclav Kotesovec, May 12 2020
More digits from Vaclav Kotesovec, Jan 16 2021

A337607 Decimal expansion of Shanks's constant: the Hardy-Littlewood constant for A000068.

Original entry on oeis.org

6, 6, 9, 7, 4, 0, 9, 6, 9, 9, 3, 7, 0, 7, 1, 2, 2, 0, 5, 3, 8, 9, 2, 2, 4, 3, 1, 5, 7, 1, 7, 6, 4, 4, 0, 6, 6, 8, 8, 3, 7, 0, 1, 5, 7, 4, 3, 6, 4, 8, 2, 4, 1, 8, 5, 7, 3, 2, 9, 8, 5, 2, 2, 8, 4, 5, 2, 4, 6, 7, 9, 9, 9, 5, 6, 4, 5, 7, 1, 4, 7, 2, 7, 3, 1, 5, 0, 6, 2, 1, 0, 2, 1, 4, 3, 5, 9, 3, 7, 3, 5, 0, 2, 7, 3, 2
Offset: 0

Views

Author

Amiram Eldar, Sep 04 2020

Keywords

Comments

Named by Finch (2003) after the American mathematician Daniel Shanks (1917 - 1996).
Shanks (1961) conjectured that the number of primes of the form m^4 + 1 (A037896) with m <= x is asymptotic to c * li(x), where li(x) is the logarithmic integral function and c is this constant. He defined c as in the formula section and evaluated it by 0.66974.
The first 100 digits of this constant were calculated by Ettahri et al. (2019).

Examples

			0.669740969937071220538922431571764406688370157436482...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, p. 90.

Crossrefs

Similar constants: A005597, A331941, A337606, A337608.

Programs

  • Mathematica
    S[m_, n_, s_] := (t = 1; sums = 0; difs = 1; While[Abs[difs] > 10^(-digits - 5) || difs == 0, difs = (MoebiusMu[t]/t) * Log[If[s*t == 1, DirichletL[m, n, s*t], Sum[Zeta[s*t, j/m]*DirichletCharacter[m, n, j]^t, {j, 1, m}]/m^(s*t)]]; sums = sums + difs; t++]; sums);
    P[m_, n_, s_] := 1/EulerPhi[m] * Sum[Conjugate[DirichletCharacter[m, r, n]] * S[m, r, s], {r, 1, EulerPhi[m]}] + Sum[If[GCD[p, m] > 1 && Mod[p, m] == n, 1/p^s, 0], {p, 1, m}];
    Z[m_, n_, s_] := (w = 1; sumz = 0; difz = 1; While[Abs[difz] > 10^(-digits - 5), difz = P[m, n, s*w]/w; sumz = sumz + difz; w++]; Exp[sumz]);
    Zs[m_, n_, s_] := (w = 2; sumz = 0; difz = 1; While[Abs[difz] > 10^(-digits - 5), difz = (s^w - s) * P[m, n, w]/w; sumz = sumz + difz; w++]; Exp[-sumz]);
    $MaxExtraPrecision = 1000; digits = 121; RealDigits[Chop[N[Pi^2/(16*Log[1+Sqrt[2]]) * Zs[8, 1, 4]/Z[8, 1, 2]^2, digits]], 10, digits-1][[1]] (* Vaclav Kotesovec, Jan 15 2021 *)

Formula

Equals (Pi^2/(16*log(1+sqrt(2)))) * Product_{primes p == 1 (mod 8)} (1 - 4/p)*((p + 1)/(p - 1))^2 = (Pi/8) * A088367 * A334826.

Extensions

More digits from Vaclav Kotesovec, Jan 15 2021

A337608 Decimal expansion of Lal's constant: the Hardy-Littlewood constant for A217795.

Original entry on oeis.org

7, 9, 2, 2, 0, 8, 2, 3, 8, 1, 6, 7, 5, 4, 1, 6, 6, 8, 7, 7, 5, 4, 5, 5, 5, 6, 6, 5, 7, 9, 0, 2, 4, 1, 0, 1, 1, 2, 8, 9, 3, 2, 2, 5, 0, 9, 8, 6, 2, 2, 1, 1, 1, 7, 2, 2, 7, 9, 7, 3, 4, 5, 2, 5, 6, 9, 5, 1, 4, 1, 5, 4, 9, 4, 4, 1, 2, 4, 9, 0, 6, 6, 0, 2, 9, 5, 3, 8, 8, 3, 9, 8, 0, 2, 7, 5, 2, 9, 2, 7, 8, 7, 3, 9, 7, 3
Offset: 0

Views

Author

Amiram Eldar, Sep 04 2020

Keywords

Comments

Shanks (1967) conjectured that the number of primes of the form (m + 1)^4 + 1 such that (m - 1)^4 + 1 is also a prime (A217795 plus 1), with m <= x, is asymptotic to c * li_2(x), where li_2(x) = Integral_{t=2..n} (1/log(t)^2) dt, and c is this constant. He defined c as in the formula section, evaluated it by 0.79220 and named it after the mathematician Mohan Lal, who conjectured the asymptotic formula without evaluating this constant.
The first 100 digits of this constant were calculated by Ettahri et al. (2019).

Examples

			0.792208238167541668775455566579024101128932250986221...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, pp. 90-91.

Crossrefs

Programs

  • Mathematica
    $MaxExtraPrecision = 1000; digits = 121;
    f[p_] := (p-8)*(p+1)^4/((p-1)^4*p);
    coefs = Rest[CoefficientList[Series[Log[f[1/x]], {x, 0, 1000}], x]];
    S[m_, n_, s_] := (t = 1; sums = 0; difs = 1; While[Abs[difs] > 10^(-digits - 5) || difs == 0, difs = (MoebiusMu[t]/t) * Log[If[s*t == 1, DirichletL[m, n, s*t], Sum[Zeta[s*t, j/m]*DirichletCharacter[m, n, j]^t, {j, 1, m}]/m^(s*t)]]; sums = sums + difs; t++]; sums);
    P[m_, n_, s_] := 1/EulerPhi[m] * Sum[Conjugate[DirichletCharacter[m, r, n]] * S[m, r, s], {r, 1, EulerPhi[m]}] + Sum[If[GCD[p, m] > 1 && Mod[p, m] == n, 1/p^s, 0], {p, 1, m}];
    m = 2; sump = 0; difp = 1; While[Abs[difp] > 10^(-digits - 5) || difp == 0, difp = coefs[[m]]*(P[8, 1, m] - 1/17^m); sump = sump + difp; m++];
    RealDigits[Chop[N[f[17] * Pi^4/(2^7 * Log[1+Sqrt[2]]^2) * Exp[sump], digits]], 10, digits - 1][[1]] (* Vaclav Kotesovec, Jan 16 2021 *)

Formula

Equals (Pi^4/(2^7 * log(1+sqrt(2))^2)) * Product_{primes p == 1 (mod 8)} (1 - 4/p)^2 * ((p + 1)/(p - 1))^4 * p*(p-8)/(p-4)^2 = (Pi^2/32) * A088367^2 * A334826^2 * A210630 = 2 * A337607^2 * A210630.

Extensions

More terms from Vaclav Kotesovec, Jan 16 2021

A340857 Decimal expansion of constant K5 = 29*log(2+sqrt(5))*(Product_{primes p == 1 (mod 5)} (1-4*(2*p-1)/(p*(p+1)^2)))/(15*Pi^2).

Original entry on oeis.org

2, 6, 2, 6, 5, 2, 1, 8, 8, 7, 2, 0, 5, 3, 6, 7, 6, 6, 6, 7, 5, 9, 6, 2, 0, 1, 1, 4, 7, 2, 0, 8, 8, 3, 4, 6, 5, 3, 0, 2, 0, 4, 3, 9, 3, 0, 6, 4, 7, 4, 4, 7, 3, 9, 1, 0, 6, 8, 2, 5, 5, 1, 0, 5, 8, 7, 0, 9, 2, 6, 6, 8, 3, 8, 6, 9, 0, 2, 2, 7, 4, 1, 7, 9, 4, 1, 9, 3, 8, 3, 6, 5, 5, 2, 3, 5, 0, 0, 2, 0, 1, 0, 0, 8, 9, 1
Offset: 0

Views

Author

Artur Jasinski, Jan 24 2021

Keywords

Comments

Finch and Sebah, 2009, p. 7 (see link) call this constant K_5. K_5 is related to the Mertens constant C(5,1) (see A340839). For more references see the links in A340711. Finch and Sebah give the following definition:
Consider the asymptotic enumeration of m-th order primitive Dirichlet characters mod n. Let b_m(n) denote the count of such characters. There exists a constant 0 < K_m < oo such that Sum_{n <= N} b_m(n) ∼ K_m*N*log(N)^(d(m) - 2) as N -> oo, where d(m) is the number of divisors of m.

Examples

			0.262652188720536766675962011472088346530204393064744739106825510587...
		

Crossrefs

Programs

  • Mathematica
    $MaxExtraPrecision = 1000; digits = 121; f[p_] := (1 - 4*(2*p-1)/(p*(p+1)^2));
    coefs = Rest[CoefficientList[Series[Log[f[1/x]], {x, 0, 1000}], x]];
    S[m_, n_, s_] := (t = 1; sums = 0; difs = 1; While[Abs[difs] > 10^(-digits - 5) || difs == 0, difs = (MoebiusMu[t]/t) * Log[If[s*t == 1, DirichletL[m, n, s*t], Sum[Zeta[s*t, j/m]*DirichletCharacter[m, n, j]^t, {j, 1, m}]/m^(s*t)]]; sums = sums + difs; t++]; sums);
    P[m_, n_, s_] := 1/EulerPhi[m] * Sum[Conjugate[DirichletCharacter[m, r, n]]*S[m, r, s], {r, 1, EulerPhi[m]}] + Sum[If[GCD[p, m] > 1 && Mod[p, m] == n, 1/p^s, 0], {p, 1, m}];
    m = 2; sump = 0; difp = 1; While[Abs[difp] > 10^(-digits - 5) || difp == 0, difp = coefs[[m]]*P[5, 1, m]; sump = sump + difp; PrintTemporary[m]; m++];
    RealDigits[Chop[N[29*Log[2+Sqrt[5]]/(15*Pi^2) * Exp[sump], digits]], 10, digits-1][[1]] (* Vaclav Kotesovec, Jan 25 2021, took over 50 minutes *)

Formula

Equals (29/25)*(Product_{primes p} (1-1/p)^2*(1+gcd(p-1,5)/(p-1))) [Finch and Sebah, 2009, p. 10].
Previous Showing 11-15 of 15 results.