cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A343513 a(n) = Sum_{k=1..n} (k/gcd(n, k))^3.

Original entry on oeis.org

1, 2, 10, 30, 101, 137, 442, 526, 1063, 1202, 3026, 1965, 6085, 4853, 7310, 8654, 18497, 10100, 29242, 17630, 29557, 30857, 64010, 30397, 77601, 60842, 89272, 71913, 164837, 60737, 216226, 139470, 188165, 180338, 265142, 152544, 443557, 282665, 371134, 275726, 672401, 251066, 815410, 461645
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 17 2021

Keywords

Comments

a(n) = 1+n^2*(n-1)^2/4 if n is prime. - Robert Israel, Apr 19 2021

Crossrefs

Programs

  • Maple
    f:= proc(n) local k;
      add((k/igcd(n,k))^3,k=1..n)
    end proc:
    map(f, [$1..100]); # Robert Israel, Apr 19 2021
  • Mathematica
    Table[Sum[(k/GCD[n, k])^3, {k, 1, n}], {n, 1, 44}]
  • PARI
    a(n) = sum(k=1, n, (k/gcd(n, k))^3); \\ Michel Marcus, Apr 17 2021

Formula

a(n) = Sum_{d|n} A053819(d).

A372930 a(n) = Sum_{1 <= x_1, x_2, x_3 <= n} gcd(x_1, x_2, x_3, n)^5.

Original entry on oeis.org

1, 39, 269, 1304, 3249, 10491, 17149, 42176, 66069, 126711, 162381, 350776, 373489, 668811, 873981, 1353216, 1424769, 2576691, 2482957, 4236696, 4613081, 6332859, 6448509, 11345344, 10168625, 14566071, 16073721, 22362296, 20535537, 34085259, 28658941, 43331584
Offset: 1

Views

Author

Seiichi Manyama, May 17 2024

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := p^(3*e-3) * (p^3 * (p^(2*e+2)-1) - p^(2*e) + 1)/(p^2-1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, May 21 2024 *)
  • PARI
    a(n) = sumdiv(n, d, moebius(n/d)*d^3*sigma(d, 2));

Formula

a(n) = Sum_{1 <= x_1, x_2, x_3, x_4, x_5 <= n} gcd(x_1, x_2, x_3, x_4, x_5, n)^3.
a(n) = Sum_{d|n} mu(n/d) * d^3 * sigma_2(d), where mu is the Moebius function A008683.
From Amiram Eldar, May 21 2024: (Start)
Multiplicative with a(p^e) = p^(3*e-3) * (p^3 * (p^(2*e+2)-1) - p^(2*e) + 1)/(p^2-1).
Dirichlet g.f.: zeta(s-3)*zeta(s-5)/zeta(s).
Sum_{k=1..n} a(k) ~ c * n^6 / 6, where c = zeta(3)/zeta(6) = 1.181564... (A157289). (End)

A372918 a(n) = Sum_{k=1..n} gcd(k^3,n^2).

Original entry on oeis.org

1, 5, 11, 26, 29, 55, 55, 148, 141, 145, 131, 286, 181, 275, 319, 680, 305, 705, 379, 754, 605, 655, 551, 1628, 1145, 905, 2367, 1430, 869, 1595, 991, 3408, 1441, 1525, 1595, 3666, 1405, 1895, 1991, 4292, 1721, 3025, 1891, 3406, 4089, 2755, 2255, 7480, 4501, 5725, 3355
Offset: 1

Views

Author

Seiichi Manyama, May 16 2024

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[GCD[k^3, n^2], {k, 1, n}]; Array[a, 100] (* Amiram Eldar, May 24 2024 *)
  • PARI
    a(n) = sum(k=1, n, gcd(k^3, n^2));

Formula

Multiplicative with a(p^e) = p^e * (1 + ((p-1)/p) * Sum_{i=1..2*e} p^(floor(2*i/3))). - Amiram Eldar, May 24 2024
Previous Showing 11-13 of 13 results.