cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A343526 Number of divisors of n^7.

Original entry on oeis.org

1, 8, 8, 15, 8, 64, 8, 22, 15, 64, 8, 120, 8, 64, 64, 29, 8, 120, 8, 120, 64, 64, 8, 176, 15, 64, 22, 120, 8, 512, 8, 36, 64, 64, 64, 225, 8, 64, 64, 176, 8, 512, 8, 120, 120, 64, 8, 232, 15, 120, 64, 120, 8, 176, 64, 176, 64, 64, 8, 960, 8, 64, 120, 43, 64, 512, 8, 120, 64, 512, 8
Offset: 1

Views

Author

Seiichi Manyama, May 15 2021

Keywords

Crossrefs

Column k=7 of A343656.

Programs

  • Mathematica
    Table[DivisorSigma[0, n^7], {n, 1, 100}] (* Amiram Eldar, May 15 2021 *)
  • PARI
    a(n) = numdiv(n^7);
    
  • PARI
    a(n) = prod(k=1, #f=factor(n)[, 2], 7*f[k]+1);
    
  • PARI
    a(n) = sumdiv(n, d, 7^omega(d));
    
  • PARI
    my(N=99, x='x+O('x^N)); Vec(sum(k=1, N, 7^omega(k)*x^k/(1-x^k)))
    
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1 + 6*X)/(1 - X)^2)[n], ", ")) \\ Vaclav Kotesovec, Aug 19 2021

Formula

a(n) = A000005(A001015(n)).
Multiplicative with a(p^e) = 7*e+1.
a(n) = Sum_{d|n} 7^omega(d).
G.f.: Sum_{k>=1} 7^omega(k) * x^k/(1 - x^k).
Dirichlet g.f.: zeta(s)^2 * Product_{primes p} (1 + 6/p^s). - Vaclav Kotesovec, Aug 19 2021

A343940 Sum of numbers of ways to choose a k-chain of divisors of n - k, for k = 0..n - 1.

Original entry on oeis.org

1, 2, 4, 7, 12, 19, 30, 45, 66, 95, 135, 187, 256, 346, 463, 613, 803, 1040, 1336, 1703, 2158, 2720, 3409, 4244, 5251, 6461, 7911, 9643, 11707, 14157, 17058, 20480, 24502, 29212, 34707, 41094, 48496, 57053, 66926, 78296, 91369, 106376, 123581, 143276, 165786
Offset: 1

Views

Author

Gus Wiseman, May 07 2021

Keywords

Examples

			The a(8) = 45 chains:
  ()  (1)  (1/1)  (1/1/1)  (1/1/1/1)  (1/1/1/1/1)  (1/1/1/1/1/1)
      (7)  (2/1)  (5/1/1)  (2/1/1/1)  (3/1/1/1/1)  (2/1/1/1/1/1)
           (2/2)  (5/5/1)  (2/2/1/1)  (3/3/1/1/1)  (2/2/1/1/1/1)
           (3/1)  (5/5/5)  (2/2/2/1)  (3/3/3/1/1)  (2/2/2/1/1/1)
           (3/3)           (2/2/2/2)  (3/3/3/3/1)  (2/2/2/2/1/1)
           (6/1)           (4/1/1/1)  (3/3/3/3/3)  (2/2/2/2/2/1)
           (6/2)           (4/2/1/1)               (2/2/2/2/2/2)
           (6/3)           (4/2/2/1)
           (6/6)           (4/2/2/2)
                           (4/4/1/1)
                           (4/4/2/1)           (1/1/1/1/1/1/1)
                           (4/4/2/2)
                           (4/4/4/1)
                           (4/4/4/2)
                           (4/4/4/4)
		

Crossrefs

Antidiagonal sums of the array (or row sums of the triangle) A334997.
A000005 counts divisors of n.
A067824 counts strict chains of divisors starting with n.
A074206 counts strict chains of divisors from n to 1.
A146291 counts divisors of n with k prime factors (with multiplicity).
A251683 counts strict length k + 1 chains of divisors from n to 1.
A253249 counts nonempty chains of divisors of n.
A334996 counts strict length k chains of divisors from n to 1.
A337255 counts strict length k chains of divisors starting with n.
Array version of A334997 has:
- column k = 2 A007425,
- transpose A077592,
- subdiagonal n = k + 1 A163767,
- strict case A343662 (row sums: A337256),
- version counting all multisets of divisors (not just chains) A343658,
- diagonal n = k A343939.

Programs

  • Mathematica
    Total/@Table[Length[Select[Tuples[Divisors[n-k],k],And@@Divisible@@@Partition[#,2,1]&]],{n,12},{k,0,n-1}]

A344327 Number of divisors of n^4.

Original entry on oeis.org

1, 5, 5, 9, 5, 25, 5, 13, 9, 25, 5, 45, 5, 25, 25, 17, 5, 45, 5, 45, 25, 25, 5, 65, 9, 25, 13, 45, 5, 125, 5, 21, 25, 25, 25, 81, 5, 25, 25, 65, 5, 125, 5, 45, 45, 25, 5, 85, 9, 45, 25, 45, 5, 65, 25, 65, 25, 25, 5, 225, 5, 25, 45, 25, 25, 125, 5, 45, 25, 125, 5, 117, 5, 25, 45, 45, 25, 125, 5, 85, 17, 25
Offset: 1

Views

Author

Seiichi Manyama, May 15 2021

Keywords

Crossrefs

Column k=4 of A343656.

Programs

  • Mathematica
    Table[DivisorSigma[0, n^4], {n, 1, 100}] (* Amiram Eldar, May 15 2021 *)
  • PARI
    a(n) = numdiv(n^4);
    
  • PARI
    a(n) = prod(k=1, #f=factor(n)[, 2], 4*f[k]+1);
    
  • PARI
    a(n) = sumdiv(n, d, 4^omega(d));
    
  • PARI
    my(N=99, x='x+O('x^N)); Vec(sum(k=1, N, 4^omega(k)*x^k/(1-x^k)))
    
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1 + 3*X)/(1 - X)^2)[n], ", ")) \\ Vaclav Kotesovec, May 15 2021
    
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1 - 6*X^2 + 8*X^3 - 3*X^4)/(1 - X)^5)[n], ", ")) \\ Vaclav Kotesovec, Aug 20 2021

Formula

a(n) = A000005(A000583(n)).
Multiplicative with a(p^e) = 4*e+1.
a(n) = Sum_{d|n} 4^omega(d).
G.f.: Sum_{k>=1} 4^omega(k) * x^k/(1 - x^k).
Dirichlet g.f.: zeta(s)^2 * Product_{primes p} (1 + 3/p^s). - Vaclav Kotesovec, May 15 2021
Dirichlet g.f.: zeta(s)^5 * Product_{primes p} (1 - 6/p^(2*s) + 8/p^(3*s) - 3/p^(4*s)). - Vaclav Kotesovec, Aug 20 2021

A344328 Number of divisors of n^5.

Original entry on oeis.org

1, 6, 6, 11, 6, 36, 6, 16, 11, 36, 6, 66, 6, 36, 36, 21, 6, 66, 6, 66, 36, 36, 6, 96, 11, 36, 16, 66, 6, 216, 6, 26, 36, 36, 36, 121, 6, 36, 36, 96, 6, 216, 6, 66, 66, 36, 6, 126, 11, 66, 36, 66, 6, 96, 36, 96, 36, 36, 6, 396, 6, 36, 66, 31, 36, 216, 6, 66, 36, 216, 6, 176, 6, 36, 66, 66, 36
Offset: 1

Views

Author

Seiichi Manyama, May 15 2021

Keywords

Crossrefs

Column k=5 of A343656.
Cf. A000005, A000584, A082476 (5^omega(n)), A203556.

Programs

  • Mathematica
    Table[DivisorSigma[0, n^5], {n, 1, 100}] (* Amiram Eldar, May 15 2021 *)
  • PARI
    a(n) = numdiv(n^5);
    
  • PARI
    a(n) = prod(k=1, #f=factor(n)[, 2], 5*f[k]+1);
    
  • PARI
    a(n) = sumdiv(n, d, 5^omega(d));
    
  • PARI
    my(N=99, x='x+O('x^N)); Vec(sum(k=1, N, 5^omega(k)*x^k/(1-x^k)))
    
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1 + 4*X)/(1 - X)^2)[n], ", ")) \\ Vaclav Kotesovec, Aug 19 2021

Formula

a(n) = A000005(A000584(n)).
Multiplicative with a(p^e) = 5*e+1.
a(n) = Sum_{d|n} 5^omega(d).
G.f.: Sum_{k>=1} 5^omega(k) * x^k/(1 - x^k).
Dirichlet g.f.: zeta(s)^2 * Product_{primes p} (1 + 4/p^s). - Vaclav Kotesovec, Aug 19 2021

A344329 Number of divisors of n^6.

Original entry on oeis.org

1, 7, 7, 13, 7, 49, 7, 19, 13, 49, 7, 91, 7, 49, 49, 25, 7, 91, 7, 91, 49, 49, 7, 133, 13, 49, 19, 91, 7, 343, 7, 31, 49, 49, 49, 169, 7, 49, 49, 133, 7, 343, 7, 91, 91, 49, 7, 175, 13, 91, 49, 91, 7, 133, 49, 133, 49, 49, 7, 637, 7, 49, 91, 37, 49, 343, 7, 91, 49, 343, 7, 247, 7
Offset: 1

Views

Author

Seiichi Manyama, May 15 2021

Keywords

Crossrefs

Column k=6 of A343656.

Programs

  • Mathematica
    Table[DivisorSigma[0, n^6], {n, 1, 100}] (* Amiram Eldar, May 15 2021 *)
  • PARI
    a(n) = numdiv(n^6);
    
  • PARI
    a(n) = prod(k=1, #f=factor(n)[, 2], 6*f[k]+1);
    
  • PARI
    a(n) = sumdiv(n, d, 6^omega(d));
    
  • PARI
    my(N=99, x='x+O('x^N)); Vec(sum(k=1, N, 6^omega(k)*x^k/(1-x^k)))
    
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1 + 5*X)/(1 - X)^2)[n], ", ")) \\ Vaclav Kotesovec, Aug 19 2021

Formula

a(n) = A000005(A001014(n)).
Multiplicative with a(p^e) = 6*e+1.
a(n) = Sum_{d|n} 6^omega(d).
G.f.: Sum_{k>=1} 6^omega(k) * x^k/(1 - x^k).
Dirichlet g.f.: zeta(s)^2 * Product_{primes p} (1 + 5/p^s). - Vaclav Kotesovec, Aug 19 2021

A344335 Number of divisors of n^8.

Original entry on oeis.org

1, 9, 9, 17, 9, 81, 9, 25, 17, 81, 9, 153, 9, 81, 81, 33, 9, 153, 9, 153, 81, 81, 9, 225, 17, 81, 25, 153, 9, 729, 9, 41, 81, 81, 81, 289, 9, 81, 81, 225, 9, 729, 9, 153, 153, 81, 9, 297, 17, 153, 81, 153, 9, 225, 81, 225, 81, 81, 9, 1377, 9, 81, 153, 49, 81, 729, 9, 153, 81, 729, 9
Offset: 1

Views

Author

Seiichi Manyama, May 15 2021

Keywords

Crossrefs

Column k=8 of A343656.

Programs

  • Mathematica
    Table[DivisorSigma[0, n^8], {n, 1, 100}] (* Amiram Eldar, May 15 2021 *)
  • PARI
    a(n) = numdiv(n^8);
    
  • PARI
    a(n) = prod(k=1, #f=factor(n)[, 2], 8*f[k]+1);
    
  • PARI
    a(n) = sumdiv(n, d, 8^omega(d));
    
  • PARI
    my(N=99, x='x+O('x^N)); Vec(sum(k=1, N, 8^omega(k)*x^k/(1-x^k)))
    
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1 + 7*X)/(1 - X)^2)[n], ", ")) \\ Vaclav Kotesovec, Aug 19 2021

Formula

a(n) = A000005(A001016(n)).
Multiplicative with a(p^e) = 8*e+1.
a(n) = Sum_{d|n} 8^omega(d).
G.f.: Sum_{k>=1} 8^omega(k) * x^k/(1 - x^k).
Dirichlet g.f.: zeta(s)^2 * Product_{primes p} (1 + 7/p^s). - Vaclav Kotesovec, Aug 19 2021

A344336 Number of divisors of n^9.

Original entry on oeis.org

1, 10, 10, 19, 10, 100, 10, 28, 19, 100, 10, 190, 10, 100, 100, 37, 10, 190, 10, 190, 100, 100, 10, 280, 19, 100, 28, 190, 10, 1000, 10, 46, 100, 100, 100, 361, 10, 100, 100, 280, 10, 1000, 10, 190, 190, 100, 10, 370, 19, 190, 100, 190, 10, 280, 100, 280, 100, 100, 10, 1900, 10, 100
Offset: 1

Views

Author

Seiichi Manyama, May 15 2021

Keywords

Crossrefs

Column k=9 of A343656.
Cf. A000005, A001017, A344337 (9^omega(n)).

Programs

  • Mathematica
    Table[DivisorSigma[0, n^9], {n, 1, 100}] (* Amiram Eldar, May 15 2021 *)
  • PARI
    a(n) = numdiv(n^9);
    
  • PARI
    a(n) = prod(k=1, #f=factor(n)[, 2], 9*f[k]+1);
    
  • PARI
    a(n) = sumdiv(n, d, 9^omega(d));
    
  • PARI
    my(N=99, x='x+O('x^N)); Vec(sum(k=1, N, 9^omega(k)*x^k/(1-x^k)))
    
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1 + 8*X)/(1 - X)^2)[n], ", ")) \\ Vaclav Kotesovec, Aug 19 2021

Formula

a(n) = A000005(A001017(n)).
Multiplicative with a(p^e) = 9*e+1.
a(n) = Sum_{d|n} 9^omega(d).
G.f.: Sum_{k>=1} 9^omega(k) * x^k/(1 - x^k).
Dirichlet g.f.: zeta(s)^2 * Product_{primes p} (1 + 8/p^s). - Vaclav Kotesovec, Aug 19 2021

A343936 Number of ways to choose a multiset of n divisors of n - 1.

Original entry on oeis.org

1, 2, 3, 10, 5, 56, 7, 120, 45, 220, 11, 4368, 13, 560, 680, 3876, 17, 26334, 19, 42504, 1771, 2024, 23, 2035800, 325, 3276, 3654, 201376, 29, 8347680, 31, 376992, 6545, 7140, 7770, 145008513, 37, 9880, 10660, 53524680, 41, 73629072, 43, 1712304, 1906884
Offset: 1

Views

Author

Gus Wiseman, May 05 2021

Keywords

Examples

			The a(1) = 1 through a(5) = 5 multisets:
  {}  {1}  {1,1}  {1,1,1}  {1,1,1,1}
      {2}  {1,3}  {1,1,2}  {1,1,1,5}
           {3,3}  {1,1,4}  {1,1,5,5}
                  {1,2,2}  {1,5,5,5}
                  {1,2,4}  {5,5,5,5}
                  {1,4,4}
                  {2,2,2}
                  {2,2,4}
                  {2,4,4}
                  {4,4,4}
The a(6) = 56 multisets:
  11111  11136  11333  12236  13366  22266  23666
  11112  11166  11336  12266  13666  22333  26666
  11113  11222  11366  12333  16666  22336  33333
  11116  11223  11666  12336  22222  22366  33336
  11122  11226  12222  12366  22223  22666  33366
  11123  11233  12223  12666  22226  23333  33666
  11126  11236  12226  13333  22233  23336  36666
  11133  11266  12233  13336  22236  23366  66666
		

Crossrefs

The version for chains of divisors is A163767.
Diagonal n = k + 1 of A343658.
Choosing n divisors of n gives A343935.
A000005 counts divisors.
A000312 = n^n.
A007318 counts k-sets of elements of {1..n}.
A009998 = n^k (as an array, offset 1).
A059481 counts k-multisets of elements of {1..n}.
A146291 counts divisors of n with k prime factors (with multiplicity).
A253249 counts nonempty chains of divisors of n.
Strict chains of divisors:
- A067824 counts strict chains of divisors starting with n.
- A074206 counts strict chains of divisors from n to 1.
- A251683 counts strict length k + 1 chains of divisors from n to 1.
- A334996 counts strict length-k chains of divisors from n to 1.
- A337255 counts strict length-k chains of divisors starting with n.
- A337256 counts strict chains of divisors of n.
- A343662 counts strict length-k chains of divisors.

Programs

  • Mathematica
    multchoo[n_,k_]:=Binomial[n+k-1,k];
    Table[multchoo[DivisorSigma[0,n],n-1],{n,50}]

Formula

a(n) = ((sigma(n - 1), n)) = binomial(sigma(n - 1) + n - 1, n) where sigma = A000005 and binomial = A007318.
Previous Showing 11-18 of 18 results.