cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 35 results. Next

A345169 Numbers k such that the k-th composition in standard order is a non-alternating anti-run.

Original entry on oeis.org

37, 52, 69, 101, 104, 105, 133, 137, 150, 165, 180, 197, 200, 208, 209, 210, 261, 265, 274, 278, 300, 301, 308, 325, 328, 357, 360, 361, 389, 393, 400, 401, 406, 416, 417, 418, 421, 422, 436, 517, 521, 529, 530, 534, 549, 550, 556, 557, 564, 581, 600, 601, 613
Offset: 1

Views

Author

Gus Wiseman, Jun 15 2021

Keywords

Comments

The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.
A sequence is alternating if it is alternately strictly increasing and strictly decreasing, starting with either. For example, the partition (3,2,2,2,1) has no alternating permutations, even though it does have the anti-run permutations (2,3,2,1,2) and (2,1,2,3,2).
An anti-run (separation or Carlitz composition) is a sequence with no adjacent equal parts.

Examples

			The sequence of terms together with their binary indices begins:
     37: (3,2,1)      210: (1,2,3,2)      400: (1,3,5)
     52: (1,2,3)      261: (6,2,1)        401: (1,3,4,1)
     69: (4,2,1)      265: (5,3,1)        406: (1,3,2,1,2)
    101: (1,3,2,1)    274: (4,3,2)        416: (1,2,6)
    104: (1,2,4)      278: (4,2,1,2)      417: (1,2,5,1)
    105: (1,2,3,1)    300: (3,2,1,3)      418: (1,2,4,2)
    133: (5,2,1)      301: (3,2,1,2,1)    421: (1,2,3,2,1)
    137: (4,3,1)      308: (3,1,2,3)      422: (1,2,3,1,2)
    150: (3,2,1,2)    325: (2,4,2,1)      436: (1,2,1,2,3)
    165: (2,3,2,1)    328: (2,3,4)        517: (7,2,1)
    180: (2,1,2,3)    357: (2,1,3,2,1)    521: (6,3,1)
    197: (1,4,2,1)    360: (2,1,2,4)      529: (5,4,1)
    200: (1,3,4)      361: (2,1,2,3,1)    530: (5,3,2)
    208: (1,2,5)      389: (1,5,2,1)      534: (5,2,1,2)
    209: (1,2,4,1)    393: (1,4,3,1)      549: (4,3,2,1)
		

Crossrefs

A version counting partitions is A345166, ranked by A345173.
These compositions are counted by A345195.
A001250 counts alternating permutations, complement A348615.
A003242 counts anti-run compositions.
A005649 counts anti-run patterns.
A025047 counts alternating or wiggly compositions, also A025048, A025049.
A325534 counts separable partitions, ranked by A335433.
A325535 counts inseparable partitions, ranked by A335448.
A345164 counts alternating permutations of prime indices.
A345165 counts partitions w/o an alternating permutation, ranked by A345171.
A345170 counts partitions w/ an alternating permutation, ranked by A345172.
A345192 counts non-alternating compositions.
A345194 counts alternating patterns (with twins: A344605).
Statistics of standard compositions:
- Length is A000120.
- Constant runs are A124767.
- Heinz number is A333219.
- Anti-runs are A333381.
- Runs-resistance is A333628.
- Number of distinct parts is A334028.
- Non-anti-runs are A348612.
Classes of standard compositions:
- Weakly decreasing compositions (partitions) are A114994.
- Weakly increasing compositions (multisets) are A225620.
- Strict compositions are A233564.
- Constant compositions are A272919.
- Strictly increasing compositions (sets) are A333255.
- Strictly decreasing compositions (strict partitions) are A333256.
- Anti-runs are A333489.
- Alternating compositions are A345167.
- Non-Alternating compositions are A345168.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[ Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    wigQ[y_]:=Or[Length[y]==0,Length[Split[y]]== Length[y]&&Length[Split[Sign[Differences[y]]]]==Length[y]-1];
    sepQ[y_]:=!MatchQ[y,{_,x_,x_,_}];
    Select[Range[0,1000],sepQ[stc[#]]&&!wigQ[stc[#]]&]

Formula

Intersection of A345168 (non-alternating) and A333489 (anti-run).

A344652 Number of permutations of the prime indices of n with no adjacent triples (..., x, y, z, ...) such that x <= y <= z.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 0, 1, 2, 1, 2, 1, 2, 2, 0, 1, 2, 1, 2, 2, 2, 1, 1, 1, 2, 0, 2, 1, 5, 1, 0, 2, 2, 2, 3, 1, 2, 2, 1, 1, 5, 1, 2, 2, 2, 1, 0, 1, 2, 2, 2, 1, 1, 2, 1, 2, 2, 1, 7, 1, 2, 2, 0, 2, 5, 1, 2, 2, 5, 1, 2, 1, 2, 2, 2, 2, 5, 1, 0, 0, 2, 1, 7, 2, 2, 2
Offset: 1

Views

Author

Gus Wiseman, Jun 17 2021

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The permutations for n = 2, 6, 8, 30, 36, 60, 180, 210, 360:
  (1)  (12)  (132)  (1212)  (1213)  (12132)  (1324)  (121213)
       (21)  (213)  (2121)  (1312)  (13212)  (1423)  (121312)
             (231)  (2211)  (1321)  (13221)  (1432)  (121321)
             (312)          (2131)  (21213)  (2143)  (131212)
             (321)          (2311)  (21312)  (2314)  (132121)
                            (3121)  (21321)  (2413)  (132211)
                            (3211)  (22131)  (2431)  (212131)
                                    (23121)  (3142)  (213121)
                                    (23211)  (3214)  (213211)
                                    (31212)  (3241)  (221311)
                                    (32121)  (3412)  (231211)
                                    (32211)  (3421)  (312121)
                                             (4132)  (321211)
                                             (4213)
                                             (4231)
                                             (4312)
                                             (4321)
		

Crossrefs

All permutations of prime indices are counted by A008480.
The case of permutations is A049774.
Avoiding (3,2,1) also gives A344606.
The wiggly case is A345164.
A001250 counts wiggly permutations.
A025047 counts wiggly compositions (ascend: A025048, descend: A025049).
A056239 adds up prime indices, row sums of A112798.
A325534 counts separable partitions, ranked by A335433.
A325535 counts inseparable partitions, ranked by A335448.
A335452 counts anti-run permutations of prime indices.
A345170 counts partitions with a wiggly permutation, ranked by A345172.
A345192 counts non-wiggly compositions, ranked by A345168.
Counting compositions by patterns:
- A102726 avoiding (1,2,3).
- A128761 avoiding (1,2,3) adjacent.
- A335514 matching (1,2,3).
- A344614 avoiding (1,2,3) and (3,2,1) adjacent.
- A344615 weakly avoiding (1,2,3) adjacent.

Programs

  • Mathematica
    Table[Length[Select[Permutations[Flatten[ ConstantArray@@@FactorInteger[n]]],!MatchQ[#,{_,x_,y_,z_,_}/;x<=y<=z]&]],{n,100}]

A345162 Number of integer partitions of n with no alternating permutation covering an initial interval of positive integers.

Original entry on oeis.org

0, 0, 1, 1, 1, 2, 2, 3, 3, 5, 6, 6, 8, 10, 11, 15, 16, 18, 23, 27, 30, 35, 41, 47, 54, 62, 71, 82, 92, 103, 121, 137, 151, 173, 195, 220, 248, 277, 311, 350, 393, 435, 488, 546, 605, 678, 754, 835, 928, 1029, 1141, 1267, 1400, 1544, 1712, 1891, 2081, 2298, 2533, 2785, 3068
Offset: 0

Views

Author

Gus Wiseman, Jun 12 2021

Keywords

Comments

A sequence is alternating if it is alternately strictly increasing and strictly decreasing, starting with either. For example, the partition (3,3,2,2,2,2,1) has no alternating permutations, even though it has anti-run permutations (2,3,2,3,2,1,2), (2,3,2,1,2,3,2), and (2,1,2,3,2,3,2).
Sequences covering an initial interval (patterns) are counted by A000670 and ranked by A333217.

Examples

			The a(2) = 1 through a(10) = 6 partitions:
  11  111  1111  2111   21111   2221     221111    22221      32221
                 11111  111111  211111   2111111   321111     222211
                                1111111  11111111  2211111    3211111
                                                   21111111   22111111
                                                   111111111  211111111
                                                              1111111111
		

Crossrefs

The complement in covering partitions is counted by A345163.
Not requiring normality gives A345165, ranked by A345171.
The separable case is A345166.
A000041 counts integer partitions.
A000670 counts patterns, ranked by A333217.
A001250 counts alternating permutations.
A003242 counts anti-run compositions.
A005649 counts anti-run patterns.
A025047 counts alternating or wiggly compositions, directed A025048/A025049.
A325534 counts separable partitions, ranked by A335433.
A325535 counts inseparable partitions, ranked by A335448.
A344604 counts alternating compositions with twins.
A344605 counts alternating patterns with twins.
A345164 counts alternating permutations of prime indices.
A345170 counts partitions with a alternating permutation, ranked by A345172.

Programs

  • Mathematica
    normQ[m_]:=m=={}||Union[m]==Range[Max[m]];
    wigQ[y_]:=Or[Length[y]==0,Length[Split[y]]==Length[y]&&Length[Split[Sign[Differences[y]]]]==Length[y]-1];
    Table[Length[Select[IntegerPartitions[n],normQ[#]&&Select[Permutations[#],wigQ[#]&]=={}&]],{n,0,15}]
  • PARI
    P(n,m)={Vec(1/prod(k=1, m, 1-y*x^k, 1+O(x*x^n)))}
    a(n) = {(n >= 2) + sum(k=2, (sqrtint(8*n+1)-1)\2, my(r=n-binomial(k+1,2), v=P(r, k)); sum(i=1, min(k,2*r\k), sum(j=k-1, (2*r-(k-1)*(i-1))\(i+1), my(p=(j+k+(i==1||i==k))\2); if(p*i<=r, polcoef(v[r-p*i+1],j-p)) )))} \\ Andrew Howroyd, Jan 31 2024

Formula

a(n) = A000009(n) - A345163(n). - Andrew Howroyd, Jan 31 2024

Extensions

a(26) onwards from Andrew Howroyd, Jan 31 2024

A349058 Number of weakly alternating patterns of length n.

Original entry on oeis.org

1, 1, 3, 11, 43, 203, 1123, 7235, 53171, 439595, 4037371, 40787579, 449500595, 5366500163, 68997666867, 950475759899, 13966170378907, 218043973366091, 3604426485899203, 62894287709616755, 1155219405655975763, 22279674547003283003, 450151092568978825707
Offset: 0

Views

Author

Gus Wiseman, Dec 04 2021

Keywords

Comments

We define a pattern to be a finite sequence covering an initial interval of positive integers. Patterns are counted by A000670 and ranked by A333217.
We define a sequence to be weakly alternating if it is alternately weakly increasing and weakly decreasing, starting with either.

Examples

			The a(1) = 1 through a(3) = 11 patterns:
  (1)  (1,1)  (1,1,1)
       (1,2)  (1,1,2)
       (2,1)  (1,2,1)
              (1,2,2)
              (1,3,2)
              (2,1,1)
              (2,1,2)
              (2,1,3)
              (2,2,1)
              (2,3,1)
              (3,1,2)
		

Crossrefs

The strict case is A001250, complement A348615.
The strong case of compositions is A025047, ranked by A345167.
The unordered version is A052955.
The strong case is A345194, with twins A344605. Also the directed case.
The version for compositions is A349052, complement A349053.
The version for permutations of prime indices: A349056, complement A349797.
The version for compositions is ranked by A349057.
The version for ordered factorizations is A349059, strong A348610.
The version for partitions is A349060, complement A349061.
A003242 counts Carlitz (anti-run) compositions.
A005649 counts anti-run patterns.
A344604 counts alternating compositions with twins.
A345163 counts normal partitions with an alternating permutation.
A345170 counts partitions w/ an alternating permutation, complement A345165.
A345192 counts non-alternating compositions, ranked by A345168.
A349055 counts multisets w/ an alternating permutation, complement A349050.

Programs

  • Mathematica
    allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s, y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]];
    whkQ[y_]:=And@@Table[If[EvenQ[m],y[[m]]<=y[[m+1]],y[[m]]>=y[[m+1]]],{m,1,Length[y]-1}];
    Table[Length[Select[Join@@Permutations/@allnorm[n],whkQ[#]||whkQ[-#]&]],{n,0,6}]
  • PARI
    R(n,k)={my(v=vector(k,i,1), u=vector(n)); for(r=1, n, if(r%2==0, my(s=v[k]); forstep(i=k, 2, -1, v[i] = s - v[i-1]); v[1] = s); for(i=2, k, v[i] += v[i-1]); u[r]=v[k]); u}
    seq(n)= {concat([1], -vector(n,i,1) + 2*sum(k=1, n, R(n, k)*sum(r=k, n, binomial(r, k)*(-1)^(r-k)) ) )} \\ Andrew Howroyd, Jan 13 2024

Extensions

a(9)-a(18) from Alois P. Heinz, Dec 10 2021
a(19) onwards from Andrew Howroyd, Jan 13 2024

A349800 Number of integer compositions of n that are weakly alternating and have at least two adjacent equal parts.

Original entry on oeis.org

0, 0, 1, 1, 4, 9, 16, 33, 62, 113, 205, 373, 664, 1190, 2113, 3744, 6618, 11683, 20564, 36164, 63489, 111343, 195042, 341357, 596892, 1042976, 1821179, 3178145, 5543173, 9663545, 16839321, 29332231, 51075576, 88908912, 154722756, 269186074, 468221264
Offset: 0

Views

Author

Gus Wiseman, Dec 16 2021

Keywords

Comments

We define a sequence to be weakly alternating if it is alternately weakly increasing and weakly decreasing, starting with either.
This sequence counts compositions that are weakly but not strongly alternating; also weakly alternating non-anti-run compositions.

Examples

			The a(2) = 1 through a(6) = 16 compositions:
  (1,1)  (1,1,1)  (2,2)      (1,1,3)      (3,3)
                  (1,1,2)    (1,2,2)      (1,1,4)
                  (2,1,1)    (2,2,1)      (2,2,2)
                  (1,1,1,1)  (3,1,1)      (4,1,1)
                             (1,1,1,2)    (1,1,1,3)
                             (1,1,2,1)    (1,1,2,2)
                             (1,2,1,1)    (1,1,3,1)
                             (2,1,1,1)    (1,3,1,1)
                             (1,1,1,1,1)  (2,2,1,1)
                                          (3,1,1,1)
                                          (1,1,1,1,2)
                                          (1,1,1,2,1)
                                          (1,1,2,1,1)
                                          (1,2,1,1,1)
                                          (2,1,1,1,1)
                                          (1,1,1,1,1,1)
		

Crossrefs

This is the weakly alternating case of A345192, ranked by A345168.
The case of partitions is A349795, ranked by A350137.
The version counting permutations of prime indices is A349798.
These compositions are ranked by A349799.
A001250 = alternating permutations, ranked by A349051, complement A348615.
A003242 = Carlitz (anti-run) compositions, ranked by A333489.
A025047/A025048/A025049 = alternating compositions, ranked by A345167.
A261983 = non-anti-run compositions, ranked by A348612.
A345165 = partitions without an alternating permutation, ranked by A345171.
A345170 = partitions with an alternating permutation, ranked by A345172.
A345173 = non-alternating anti-run partitions, ranked by A345166.
A345195 = non-alternating anti-run compositions, ranked by A345169.
A348377 = non-alternating non-twin compositions.
A349801 = non-alternating partitions, ranked by A289553.
Weakly alternating:
- A349052 = compositions, directed A129852/A129853, complement A349053.
- A349056 = permutations of prime indices, complement A349797.
- A349057 = complement of standard composition numbers (too dense).
- A349058 = patterns, complement A350138.
- A349059 = ordered factorizations, complement A350139.
- A349060 = partitions, complement A349061.

Programs

  • Mathematica
    wigQ[y_]:=Or[Length[y]==0,Length[Split[y]]==Length[y] &&Length[Split[Sign[Differences[y]]]]==Length[y]-1];
    whkQ[y_]:=And@@Table[If[EvenQ[m],y[[m]]<=y[[m+1]],y[[m]]>=y[[m+1]]],{m,1,Length[y]-1}];
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],(whkQ[#]||whkQ[-#])&&!wigQ[#]&]],{n,0,10}]

Formula

a(n) = A349052(n) - A025047(n). - Andrew Howroyd, Jan 31 2024

Extensions

a(21) onwards from Andrew Howroyd, Jan 31 2024

A349051 Numbers k such that the k-th composition in standard order is an alternating permutation of {1..k} for some k.

Original entry on oeis.org

0, 1, 5, 6, 38, 41, 44, 50, 553, 562, 582, 593, 610, 652, 664, 708, 788, 808, 16966, 17036, 17048, 17172, 17192, 17449, 17458, 17542, 17676, 17712, 17940, 18000, 18513, 18530, 18593, 18626, 18968, 18992, 19496, 19536, 20625, 20676, 20769, 20868, 21256, 22600
Offset: 1

Views

Author

Gus Wiseman, Nov 08 2021

Keywords

Comments

The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.
A sequence is alternating if it is alternately strictly increasing and strictly decreasing, starting with either. For example, the partition (3,2,2,2,1) has no alternating permutations, even though it does have the anti-run permutations (2,3,2,1,2) and (2,1,2,3,2).

Examples

			The sequence together with the corresponding compositions begins:
        0: ()
        1: (1)
        5: (2,1)
        6: (1,2)
       38: (3,1,2)
       41: (2,3,1)
       44: (2,1,3)
       50: (1,3,2)
      553: (4,2,3,1)
      562: (4,1,3,2)
      582: (3,4,1,2)
      593: (3,2,4,1)
      610: (3,1,4,2)
      652: (2,4,1,3)
      664: (2,3,1,4)
      708: (2,1,4,3)
      788: (1,4,2,3)
      808: (1,3,2,4)
    16966: (5,3,4,1,2)
    17036: (5,2,4,1,3)
		

Crossrefs

These permutations are counted by A001250, complement A348615.
Compositions of this type are counted by A025047, complement A345192.
Subset of A333218, which ranks permutations of initial intervals.
Subset of A345167, which ranks alternating compositions, complement A345168.
A003242 counts Carlitz (anti-run) compositions.
A345163 counts normal partitions with an alternating permutation.
A345164 counts alternating permutations of prime indices.
A345170 counts partitions with an alternating permutation.
Compositions in standard order are the rows of A066099:
- Number of parts is given by A000120, distinct A334028.
- Sum and product of parts are given by A070939 and A124758.
- Maximum and minimum parts are given by A333766 and A333768.
- GCD and LCM are given by A326674 and A333226.
- Maximal runs and anti-runs are counted by A124767 and A333381.
- Heinz number is given by A333219.
- Runs-resistance is given by A333628.
- Partitions and strict partitions are ranked by A114994 and A333256.
- Multisets and sets are ranked by A225620 and A333255.
- Strict and constant compositions are ranked by A233564 and A272919.
- Carlitz (anti-run) compositions are ranked by A333489.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[ Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    wigQ[y_]:=Or[Length[y]==0,Length[Split[y]]== Length[y]&&Length[Split[Sign[Differences[y]]]]==Length[y]-1];
    Select[Range[0,1000],Sort[stc[#]]==Range[Length[stc[#]]]&&wigQ[stc[#]]&]

Formula

Equals A333218 (permutation) /\ A345167 (alternating).

A349795 Number of non-strict integer partitions of n that are constant or whose part multiplicities, except possibly the first and last, are all even.

Original entry on oeis.org

0, 0, 1, 1, 3, 4, 7, 9, 14, 17, 24, 29, 39, 46, 61, 69, 90, 103, 131, 147, 185, 207, 259, 286, 355, 391, 482, 528, 644, 706, 858, 933, 1129, 1228, 1477, 1597, 1916, 2072, 2473, 2668, 3168, 3415, 4047, 4347, 5133, 5514, 6488, 6952, 8162, 8738, 10226, 10936
Offset: 0

Views

Author

Gus Wiseman, Dec 06 2021

Keywords

Comments

Also the number of weakly alternating non-strict integer partitions of n, where we define a sequence to be weakly alternating if it is alternately weakly increasing and weakly decreasing, starting with either. This sequence looks at the somewhat degenerate case where no strict increases are allowed. Equivalently, these are partitions that are weakly alternating but not strongly alternating.

Examples

			The a(2) = 1 through a(8) = 14 partitions:
  (11)  (111)  (22)    (221)    (33)      (322)      (44)
               (211)   (311)    (222)     (331)      (332)
               (1111)  (2111)   (411)     (511)      (422)
                       (11111)  (2211)    (2221)     (611)
                                (3111)    (4111)     (2222)
                                (21111)   (22111)    (3221)
                                (111111)  (31111)    (3311)
                                          (211111)   (5111)
                                          (1111111)  (22211)
                                                     (41111)
                                                     (221111)
                                                     (311111)
                                                     (2111111)
                                                     (11111111)
		

Crossrefs

This is the restriction of A349060 to non-strict partitions.
The complement in non-strict partitions is A349796.
Permutations of prime factors of this type are counted by A349798.
The ordered version (compositions) is A349800, ranked by A349799.
These partitions are ranked by A350137.
A000041 counts integer partitions, non-strict A047967.
A001250 counts alternating permutations, complement A348615.
A025047 counts alternating compositions, also A025048 and A025049.
A096441 counts weakly alternating 0-appended partitions.
A345170 counts partitions w/ an alternating permutation, ranked by A345172.
A349053 counts non-weakly alternating compositions, complement A349052.
A349061 counts non-weakly alternating partitions, ranked by A349794.
A349801 counts non-alternating partitions.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],!UnsameQ@@#&&(SameQ@@#||And@@EvenQ/@Take[Length/@Split[#],{2,-2}])&]],{n,0,30}]

Formula

a(n > 0) = A349060(n) - A065033(n) = A349060(n) - floor(n/2).
a(n) = A047967(n) - A349796(n).

A349798 Number of weakly alternating ordered prime factorizations of n with at least two adjacent equal parts.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 2, 0, 0, 0, 1, 0, 2, 0, 2, 0, 0, 0, 4, 1, 0, 1, 2, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 4, 0, 0, 0, 2, 2, 0, 0, 5, 1, 2, 0, 2, 0, 4, 0, 4, 0, 0, 0, 2, 0, 0, 2, 1, 0, 0, 0, 2, 0, 0, 0, 5, 0, 0, 2, 2, 0, 0, 0, 5, 1, 0, 0, 2, 0, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Dec 14 2021

Keywords

Comments

We define a sequence to be weakly alternating if it is alternately weakly increasing and weakly decreasing, starting with either. This sequence counts permutations of prime factors that are weakly but not strongly alternating. Alternating permutations of multisets are a generalization of alternating or up-down permutations of {1..n}.

Examples

			Using prime indices instead of factors, the a(n) ordered prime factorizations for selected n are:
n = 4    12    24     48      90     120     192       240      270
   ------------------------------------------------------------------
    11   112   1112   11112   1223   11132   1111112   111132   12232
         211   1121   11121   1322   11213   1111121   111213   13222
               1211   11211   2213   11312   1111211   111312   21223
               2111   12111   2231   21113   1112111   112131   21322
                      21111   3122   21311   1121111   113121   22132
                              3221   23111   1211111   121113   22213
                                     31112   2111111   121311   22231
                                     31211             131112   22312
                                                       131211   23122
                                                       211131   23221
                                                       213111   31222
                                                       231111   32212
                                                       311121
                                                       312111
		

Crossrefs

This is the weakly but not strictly alternating case of A008480.
Including alternating (in fact, anti-run) permutations gives A349056.
These partitions are counted by A349795, ranked by A350137.
A complementary version is A349796, ranked by A350140.
The version for compositions is A349800, ranked by A349799.
A001250 = alternating permutations, ranked by A349051, complement A348615.
A025047/A025048/A025049 = alternating compositions, ranked by A345167.
A056239 adds up prime indices, row sums of A112798, row lengths A001222.
A335452 = anti-run ordered prime factorizations.
A344652 = ordered prime factorizations w/o weakly increasing triples.
A345164 = alternating ordered prime factorizations, with twins A344606.
A345194 = alternating patterns, with twins A344605.
A349052/A129852/A129853 = weakly alternating compositions.
A349053 = non-weakly alternating compositions, ranked by A349057.
A349060 = weakly alternating partitions, complement A349061.
A349797 = non-weakly alternating ordered prime factorizations.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    whkQ[y_]:=And@@Table[If[EvenQ[m],y[[m]]<=y[[m+1]],y[[m]]>=y[[m+1]]],{m,1,Length[y]-1}];
    Table[Length[Select[Permutations[primeMS[n]],(whkQ[#]||whkQ[-#])&&MatchQ[#,{_,x_,x_,_}]&]],{n,100}]

A349799 Numbers k such that the k-th composition in standard order is weakly alternating but has at least two adjacent equal parts.

Original entry on oeis.org

3, 7, 10, 11, 14, 15, 19, 21, 23, 26, 27, 28, 29, 30, 31, 35, 36, 39, 42, 43, 47, 51, 55, 56, 57, 58, 59, 60, 61, 62, 63, 67, 71, 73, 74, 79, 83, 84, 85, 86, 87, 90, 91, 94, 95, 99, 100, 103, 106, 111, 112, 113, 114, 115, 118, 119, 120, 121, 122, 123, 124, 125
Offset: 1

Views

Author

Gus Wiseman, Dec 15 2021

Keywords

Comments

We define a sequence to be weakly alternating if it is alternately weakly increasing and weakly decreasing, starting with either.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.
This sequence ranks compositions that are weakly but not strongly alternating.

Examples

			The terms and corresponding compositions begin:
   3: (1,1)
   7: (1,1,1)
  10: (2,2)
  11: (2,1,1)
  14: (1,1,2)
  15: (1,1,1,1)
  19: (3,1,1)
  21: (2,2,1)
  23: (2,1,1,1)
  26: (1,2,2)
  27: (1,2,1,1)
  28: (1,1,3)
  29: (1,1,2,1)
  30: (1,1,1,2)
  31: (1,1,1,1,1)
		

Crossrefs

Partitions of this type are counted by A349795, ranked by A350137.
Permutations of prime indices of this type are counted by A349798.
These compositions are counted by A349800.
A001250 = alternating permutations, ranked by A349051, complement A348615.
A003242 = Carlitz (anti-run) compositions, ranked by A333489.
A025047/A025048/A025049 = alternating compositions, ranked by A345167.
A261983 = non-anti-run compositions, ranked by A348612.
A345164 = alternating permutations of prime indices, with twins A344606.
A345165 = partitions without an alternating permutation, ranked by A345171.
A345170 = partitions with an alternating permutation, ranked by A345172.
A345166 = separable partitions with no alternations, ranked by A345173.
A345192 = non-alternating compositions, ranked by A345168.
A345195 = non-alternating anti-run compositions, ranked by A345169.
A349052/A129852/A129853 = weakly alternating compositions.
A349053 = non-weakly alternating compositions, ranked by A349057.
A349056 = weak alternations of prime indices, complement A349797.
A349060 = weak alternations of partitions, complement A349061.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[ Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    whkQ[y_]:=And@@Table[If[EvenQ[m],y[[m]]<=y[[m+1]],y[[m]]>=y[[m+1]]],{m,1,Length[y]-1}];
    Select[Range[0,100],(whkQ[stc[#]]||whkQ[-stc[#]])&&MatchQ[stc[#],{_,x_,x_,_}]&]

Formula

A349794 Numbers whose prime signature has an odd term other than the first or last.

Original entry on oeis.org

30, 42, 60, 66, 70, 78, 84, 102, 105, 110, 114, 120, 130, 132, 138, 140, 150, 154, 156, 165, 168, 170, 174, 182, 186, 190, 195, 204, 210, 220, 222, 228, 230, 231, 238, 240, 246, 255, 258, 260, 264, 266, 270, 273, 276, 280, 282, 285, 286, 290, 294, 300, 308
Offset: 1

Views

Author

Gus Wiseman, Dec 06 2021

Keywords

Comments

A number's prime signature (row n of A124010) is the sequence of positive exponents in its prime factorization.
Also numbers whose multiset of prime factors is not weakly alternating, where we define a sequence to be weakly alternating if it is alternately weakly increasing and weakly decreasing, starting with either. This sequence looks at the somewhat degenerate case where no strict decreases are allowed.

Examples

			The terms and their prime indices begin:
   30: {1,2,3}
   42: {1,2,4}
   60: {1,1,2,3}
   66: {1,2,5}
   70: {1,3,4}
   78: {1,2,6}
   84: {1,1,2,4}
  102: {1,2,7}
  105: {2,3,4}
  110: {1,3,5}
  114: {1,2,8}
  120: {1,1,1,2,3}
  130: {1,3,6}
  132: {1,1,2,5}
  138: {1,2,9}
		

Crossrefs

The complement for compositions is A025047, ranked by A345167.
Signatures of this type are counted by A274230, complement A027383.
The strong case is A289553, complement A167171.
The strong case for compositions is A345192, ranked by A345168.
The version for compositions is A349053, ranked by A349057.
These partitions are counted by A349061, complement A349060, strong A349801.
The non-strict case is counted by A349795.
A001250 counts alternating permutations, complement A348615.
A096441 counts weakly alternating partitions if 0 is appended.
A345164 counts alternating permutations of prime indices, weak A349056.
A345170 counts partitions w/ an alternating permutation, ranked by A345172.
A349052 counts weakly alternating compositions.
A349059 counts weakly alternating ordered factorizations, strong A348610.

Programs

  • Mathematica
    Select[Range[100],PrimeNu[#]>1&&!And@@EvenQ/@Take[Last/@FactorInteger[#],{2,-2}]&]
Previous Showing 21-30 of 35 results. Next