cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 50 results. Next

A349055 Number of multisets of size n that have an alternating permutation and cover an initial interval of positive integers.

Original entry on oeis.org

1, 1, 1, 3, 5, 12, 24, 52, 108, 224, 464, 944, 1936, 3904, 7936, 15936, 32192, 64512, 129792, 259840, 521472, 1043456, 2091008, 4183040, 8375296, 16752640, 33525760, 67055616, 134156288, 268320768, 536739840, 1073496064, 2147205120, 4294443008, 8589344768
Offset: 0

Views

Author

Gus Wiseman, Dec 12 2021

Keywords

Comments

A sequence is alternating if it is alternately strictly increasing and strictly decreasing, starting with either. For example, the partition (3,2,2,2,1) has no alternating permutations, even though it does have the anti-run permutations (2,3,2,1,2) and (2,1,2,3,2). Alternating permutations of multisets are a generalization of alternating or up-down permutations of {1..n}.
The multisets that have an alternating permutation are those which have no part with multiplicity greater than floor(n/2) except for odd n when either the smallest or largest part can have multiplicity ceiling(n/2). - Andrew Howroyd, Jan 13 2024

Examples

			The multiset {1,2,2,3} has alternating permutations (2,1,3,2), (2,3,1,2), so is counted under a(4).
The a(1) = 1 through a(5) = 12 multisets:
  {1}  {1,2}  {1,1,2}  {1,1,2,2}  {1,1,1,2,2}
              {1,2,2}  {1,1,2,3}  {1,1,1,2,3}
              {1,2,3}  {1,2,2,3}  {1,1,2,2,2}
                       {1,2,3,3}  {1,1,2,2,3}
                       {1,2,3,4}  {1,1,2,3,3}
                                  {1,1,2,3,4}
                                  {1,2,2,3,3}
                                  {1,2,2,3,4}
                                  {1,2,3,3,3}
                                  {1,2,3,3,4}
                                  {1,2,3,4,4}
                                  {1,2,3,4,5}
As compositions:
  (1)  (1,1)  (1,2)    (2,2)      (2,3)
              (2,1)    (1,1,2)    (3,2)
              (1,1,1)  (1,2,1)    (1,1,3)
                       (2,1,1)    (1,2,2)
                       (1,1,1,1)  (2,1,2)
                                  (2,2,1)
                                  (3,1,1)
                                  (1,1,1,2)
                                  (1,1,2,1)
                                  (1,2,1,1)
                                  (2,1,1,1)
                                  (1,1,1,1,1)
		

Crossrefs

The strong inseparable case is A025065.
A separable instead of alternating version is A336103, complement A336102.
The case of weakly decreasing multiplicities is A336106.
The version for non-twin partitions is A344654, ranked by A344653.
The complement for non-twin partitions is A344740, ranked by A344742.
The complement for partitions is A345165, ranked by A345171.
The version for partitions is A345170, ranked by A345172.
The version for factorizations is A348379, complement A348380.
The complement (still covering an initial interval) is counted by A349050.
A000670 counts sequences covering an initial interval, anti-run A005649.
A001250 counts alternating permutations, complement A348615.
A003242 counts Carlitz (anti-run) compositions, ranked by A333489.
A025047 = alternating compositions, ranked by A345167, also A025048/A025049.
A049774 counts permutations avoiding the consecutive pattern (1,2,3).
A325534 counts separable partitions, ranked by A335433.
A325535 counts inseparable partitions, ranked by A335448.

Programs

  • Mathematica
    allnorm[n_]:=If[n<=0,{{}},Function[s, Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]];
    wigQ[y_]:=Or[Length[y]==0, Length[Split[y]]==Length[y]&&Length[Split[Sign[Differences[y]]]]==Length[y]-1];
    Table[Length[Select[allnorm[n], Select[Permutations[#],wigQ]!={}&]],{n,0,7}]
  • PARI
    a(n) = if(n==0, 1, 2^(n-1) - if(n%2==0, (n+2)*2^(n/2-3), (n-1)*2^((n-5)/2))) \\ Andrew Howroyd, Jan 13 2024

Formula

a(n) = A011782(n) - A349050(n).
a(n) = 2^(n-1) - (n+2)*2^(n/2-3) for even n > 0; a(n) = 2^(n-1) - (n-1)*2^((n-5)/2) for odd n. - Andrew Howroyd, Jan 13 2024

Extensions

Terms a(10) and beyond from Andrew Howroyd, Jan 13 2024

A349059 Number of weakly alternating ordered factorizations of n.

Original entry on oeis.org

1, 1, 1, 2, 1, 3, 1, 4, 2, 3, 1, 8, 1, 3, 3, 8, 1, 8, 1, 8, 3, 3, 1, 18, 2, 3, 4, 8, 1, 11, 1, 16, 3, 3, 3, 22, 1, 3, 3, 18, 1, 11, 1, 8, 8, 3, 1, 38, 2, 8, 3, 8, 1, 18, 3, 18, 3, 3, 1, 32, 1, 3, 8, 28, 3, 11, 1, 8, 3, 11, 1, 56, 1, 3, 8, 8, 3, 11, 1, 38, 8, 3
Offset: 1

Views

Author

Gus Wiseman, Dec 04 2021

Keywords

Comments

An ordered factorization of n is a finite sequence of positive integers > 1 with product n.
We define a sequence to be weakly alternating if it is alternately weakly increasing and weakly decreasing, starting with either.

Examples

			The ordered factorizations for n = 2, 4, 6, 8, 12, 24, 30:
  (2)  (4)    (6)    (8)      (12)     (24)       (30)
       (2*2)  (2*3)  (2*4)    (2*6)    (3*8)      (5*6)
              (3*2)  (4*2)    (3*4)    (4*6)      (6*5)
                     (2*2*2)  (4*3)    (6*4)      (10*3)
                              (6*2)    (8*3)      (15*2)
                              (2*2*3)  (12*2)     (2*15)
                              (2*3*2)  (2*12)     (3*10)
                              (3*2*2)  (2*2*6)    (2*5*3)
                                       (2*4*3)    (3*2*5)
                                       (2*6*2)    (3*5*2)
                                       (3*2*4)    (5*2*3)
                                       (3*4*2)
                                       (4*2*3)
                                       (6*2*2)
                                       (2*2*2*3)
                                       (2*2*3*2)
                                       (2*3*2*2)
                                       (3*2*2*2)
		

Crossrefs

The strong version for compositions is A025047, also A025048, A025049.
The strong case is A348610, complement A348613.
The version for compositions is A349052, complement A349053.
As compositions these are ranked by the complement of A349057.
A001055 counts factorizations, strict A045778, ordered A074206.
A001250 counts alternating permutations, complement A348615.
A335434 counts separable factorizations, complement A333487.
A345164 counts alternating permutations of prime factors, w/ twins A344606.
A345170 counts partitions with an alternating permutation.
A348379 = factorizations w/ alternating permutation, complement A348380.
A348611 counts anti-run ordered factorizations, complement A348616.
A349060 counts weakly alternating partitions, complement A349061.
A349800 = weakly but not strongly alternating compositions, ranked A349799.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&, Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    whkQ[y_]:=And@@Table[If[EvenQ[m],y[[m]]<=y[[m+1]],y[[m]]>=y[[m+1]]], {m,1,Length[y]-1}];
    Table[Length[Select[Join@@Permutations/@facs[n], whkQ[#]||whkQ[-#]&]],{n,100}]

Formula

a(2^n) = A349052(n).

A345162 Number of integer partitions of n with no alternating permutation covering an initial interval of positive integers.

Original entry on oeis.org

0, 0, 1, 1, 1, 2, 2, 3, 3, 5, 6, 6, 8, 10, 11, 15, 16, 18, 23, 27, 30, 35, 41, 47, 54, 62, 71, 82, 92, 103, 121, 137, 151, 173, 195, 220, 248, 277, 311, 350, 393, 435, 488, 546, 605, 678, 754, 835, 928, 1029, 1141, 1267, 1400, 1544, 1712, 1891, 2081, 2298, 2533, 2785, 3068
Offset: 0

Views

Author

Gus Wiseman, Jun 12 2021

Keywords

Comments

A sequence is alternating if it is alternately strictly increasing and strictly decreasing, starting with either. For example, the partition (3,3,2,2,2,2,1) has no alternating permutations, even though it has anti-run permutations (2,3,2,3,2,1,2), (2,3,2,1,2,3,2), and (2,1,2,3,2,3,2).
Sequences covering an initial interval (patterns) are counted by A000670 and ranked by A333217.

Examples

			The a(2) = 1 through a(10) = 6 partitions:
  11  111  1111  2111   21111   2221     221111    22221      32221
                 11111  111111  211111   2111111   321111     222211
                                1111111  11111111  2211111    3211111
                                                   21111111   22111111
                                                   111111111  211111111
                                                              1111111111
		

Crossrefs

The complement in covering partitions is counted by A345163.
Not requiring normality gives A345165, ranked by A345171.
The separable case is A345166.
A000041 counts integer partitions.
A000670 counts patterns, ranked by A333217.
A001250 counts alternating permutations.
A003242 counts anti-run compositions.
A005649 counts anti-run patterns.
A025047 counts alternating or wiggly compositions, directed A025048/A025049.
A325534 counts separable partitions, ranked by A335433.
A325535 counts inseparable partitions, ranked by A335448.
A344604 counts alternating compositions with twins.
A344605 counts alternating patterns with twins.
A345164 counts alternating permutations of prime indices.
A345170 counts partitions with a alternating permutation, ranked by A345172.

Programs

  • Mathematica
    normQ[m_]:=m=={}||Union[m]==Range[Max[m]];
    wigQ[y_]:=Or[Length[y]==0,Length[Split[y]]==Length[y]&&Length[Split[Sign[Differences[y]]]]==Length[y]-1];
    Table[Length[Select[IntegerPartitions[n],normQ[#]&&Select[Permutations[#],wigQ[#]&]=={}&]],{n,0,15}]
  • PARI
    P(n,m)={Vec(1/prod(k=1, m, 1-y*x^k, 1+O(x*x^n)))}
    a(n) = {(n >= 2) + sum(k=2, (sqrtint(8*n+1)-1)\2, my(r=n-binomial(k+1,2), v=P(r, k)); sum(i=1, min(k,2*r\k), sum(j=k-1, (2*r-(k-1)*(i-1))\(i+1), my(p=(j+k+(i==1||i==k))\2); if(p*i<=r, polcoef(v[r-p*i+1],j-p)) )))} \\ Andrew Howroyd, Jan 31 2024

Formula

a(n) = A000009(n) - A345163(n). - Andrew Howroyd, Jan 31 2024

Extensions

a(26) onwards from Andrew Howroyd, Jan 31 2024

A349054 Number of alternating strict compositions of n. Number of alternating (up/down or down/up) permutations of strict integer partitions of n.

Original entry on oeis.org

1, 1, 1, 3, 3, 5, 9, 11, 15, 21, 35, 41, 59, 75, 103, 155, 193, 255, 339, 443, 569, 841, 1019, 1365, 1743, 2295, 2879, 3785, 5151, 6417, 8301, 10625, 13567, 17229, 21937, 27509, 37145, 45425, 58345, 73071, 93409, 115797, 147391, 182151, 229553, 297061, 365625
Offset: 0

Views

Author

Gus Wiseman, Dec 21 2021

Keywords

Comments

A strict composition of n is a finite sequence of distinct positive integers summing to n.
A sequence is alternating if it is alternately strictly increasing and strictly decreasing, starting with either.
The case starting with an increase (or decrease, it doesn't matter in the enumeration) is counted by A129838.

Examples

			The a(1) = 1 through a(7) = 11 compositions:
  (1)  (2)  (3)    (4)    (5)    (6)      (7)
            (1,2)  (1,3)  (1,4)  (1,5)    (1,6)
            (2,1)  (3,1)  (2,3)  (2,4)    (2,5)
                          (3,2)  (4,2)    (3,4)
                          (4,1)  (5,1)    (4,3)
                                 (1,3,2)  (5,2)
                                 (2,1,3)  (6,1)
                                 (2,3,1)  (1,4,2)
                                 (3,1,2)  (2,1,4)
                                          (2,4,1)
                                          (4,1,2)
		

Crossrefs

Ranking sequences are put in parentheses below.
This is the strict case of A025047/A025048/A025049 (A345167).
This is the alternating case of A032020 (A233564).
The unordered case (partitions) is A065033.
The directed case is A129838.
A001250 = alternating permutations (A349051), complement A348615 (A350250).
A003242 = Carlitz (anti-run) compositions, complement A261983.
A011782 = compositions, unordered A000041.
A345165 = partitions without an alternating permutation (A345171).
A345170 = partitions with an alternating permutation (A345172).
A345192 = non-alternating compositions (A345168).
A345195 = non-alternating anti-run compositions (A345169).
A349800 = weakly but not strongly alternating compositions (A349799).
A349052 = weakly alternating compositions, complement A349053 (A349057).

Programs

  • Maple
    g:= proc(u, o) option remember;
          `if`(u+o=0, 1, add(g(o-1+j, u-j), j=1..u))
        end:
    b:= proc(n, k) option remember; `if`(k<0 or n<0, 0,
          `if`(k=0, `if`(n=0, 2, 0), b(n-k, k)+b(n-k, k-1)))
        end:
    a:= n-> add(b(n, k)*g(k, 0), k=0..floor((sqrt(8*n+1)-1)/2))-1:
    seq(a(n), n=0..46);  # Alois P. Heinz, Dec 22 2021
  • Mathematica
    wigQ[y_]:=Or[Length[y]==0,Length[Split[y]]==Length[y]&&Length[Split[Sign[Differences[y]]]]==Length[y]-1];
    Table[Length[Select[Join@@Permutations/@Select[IntegerPartitions[n],UnsameQ@@#&],wigQ]],{n,0,15}]

Formula

a(n) = 2 * A129838(n) - 1.
G.f.: Sum_{n>0} A001250(n)*x^(n*(n+1)/2)/Product_{k=1..n}(1-x^k).

A349058 Number of weakly alternating patterns of length n.

Original entry on oeis.org

1, 1, 3, 11, 43, 203, 1123, 7235, 53171, 439595, 4037371, 40787579, 449500595, 5366500163, 68997666867, 950475759899, 13966170378907, 218043973366091, 3604426485899203, 62894287709616755, 1155219405655975763, 22279674547003283003, 450151092568978825707
Offset: 0

Views

Author

Gus Wiseman, Dec 04 2021

Keywords

Comments

We define a pattern to be a finite sequence covering an initial interval of positive integers. Patterns are counted by A000670 and ranked by A333217.
We define a sequence to be weakly alternating if it is alternately weakly increasing and weakly decreasing, starting with either.

Examples

			The a(1) = 1 through a(3) = 11 patterns:
  (1)  (1,1)  (1,1,1)
       (1,2)  (1,1,2)
       (2,1)  (1,2,1)
              (1,2,2)
              (1,3,2)
              (2,1,1)
              (2,1,2)
              (2,1,3)
              (2,2,1)
              (2,3,1)
              (3,1,2)
		

Crossrefs

The strict case is A001250, complement A348615.
The strong case of compositions is A025047, ranked by A345167.
The unordered version is A052955.
The strong case is A345194, with twins A344605. Also the directed case.
The version for compositions is A349052, complement A349053.
The version for permutations of prime indices: A349056, complement A349797.
The version for compositions is ranked by A349057.
The version for ordered factorizations is A349059, strong A348610.
The version for partitions is A349060, complement A349061.
A003242 counts Carlitz (anti-run) compositions.
A005649 counts anti-run patterns.
A344604 counts alternating compositions with twins.
A345163 counts normal partitions with an alternating permutation.
A345170 counts partitions w/ an alternating permutation, complement A345165.
A345192 counts non-alternating compositions, ranked by A345168.
A349055 counts multisets w/ an alternating permutation, complement A349050.

Programs

  • Mathematica
    allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s, y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]];
    whkQ[y_]:=And@@Table[If[EvenQ[m],y[[m]]<=y[[m+1]],y[[m]]>=y[[m+1]]],{m,1,Length[y]-1}];
    Table[Length[Select[Join@@Permutations/@allnorm[n],whkQ[#]||whkQ[-#]&]],{n,0,6}]
  • PARI
    R(n,k)={my(v=vector(k,i,1), u=vector(n)); for(r=1, n, if(r%2==0, my(s=v[k]); forstep(i=k, 2, -1, v[i] = s - v[i-1]); v[1] = s); for(i=2, k, v[i] += v[i-1]); u[r]=v[k]); u}
    seq(n)= {concat([1], -vector(n,i,1) + 2*sum(k=1, n, R(n, k)*sum(r=k, n, binomial(r, k)*(-1)^(r-k)) ) )} \\ Andrew Howroyd, Jan 13 2024

Extensions

a(9)-a(18) from Alois P. Heinz, Dec 10 2021
a(19) onwards from Andrew Howroyd, Jan 13 2024

A349800 Number of integer compositions of n that are weakly alternating and have at least two adjacent equal parts.

Original entry on oeis.org

0, 0, 1, 1, 4, 9, 16, 33, 62, 113, 205, 373, 664, 1190, 2113, 3744, 6618, 11683, 20564, 36164, 63489, 111343, 195042, 341357, 596892, 1042976, 1821179, 3178145, 5543173, 9663545, 16839321, 29332231, 51075576, 88908912, 154722756, 269186074, 468221264
Offset: 0

Views

Author

Gus Wiseman, Dec 16 2021

Keywords

Comments

We define a sequence to be weakly alternating if it is alternately weakly increasing and weakly decreasing, starting with either.
This sequence counts compositions that are weakly but not strongly alternating; also weakly alternating non-anti-run compositions.

Examples

			The a(2) = 1 through a(6) = 16 compositions:
  (1,1)  (1,1,1)  (2,2)      (1,1,3)      (3,3)
                  (1,1,2)    (1,2,2)      (1,1,4)
                  (2,1,1)    (2,2,1)      (2,2,2)
                  (1,1,1,1)  (3,1,1)      (4,1,1)
                             (1,1,1,2)    (1,1,1,3)
                             (1,1,2,1)    (1,1,2,2)
                             (1,2,1,1)    (1,1,3,1)
                             (2,1,1,1)    (1,3,1,1)
                             (1,1,1,1,1)  (2,2,1,1)
                                          (3,1,1,1)
                                          (1,1,1,1,2)
                                          (1,1,1,2,1)
                                          (1,1,2,1,1)
                                          (1,2,1,1,1)
                                          (2,1,1,1,1)
                                          (1,1,1,1,1,1)
		

Crossrefs

This is the weakly alternating case of A345192, ranked by A345168.
The case of partitions is A349795, ranked by A350137.
The version counting permutations of prime indices is A349798.
These compositions are ranked by A349799.
A001250 = alternating permutations, ranked by A349051, complement A348615.
A003242 = Carlitz (anti-run) compositions, ranked by A333489.
A025047/A025048/A025049 = alternating compositions, ranked by A345167.
A261983 = non-anti-run compositions, ranked by A348612.
A345165 = partitions without an alternating permutation, ranked by A345171.
A345170 = partitions with an alternating permutation, ranked by A345172.
A345173 = non-alternating anti-run partitions, ranked by A345166.
A345195 = non-alternating anti-run compositions, ranked by A345169.
A348377 = non-alternating non-twin compositions.
A349801 = non-alternating partitions, ranked by A289553.
Weakly alternating:
- A349052 = compositions, directed A129852/A129853, complement A349053.
- A349056 = permutations of prime indices, complement A349797.
- A349057 = complement of standard composition numbers (too dense).
- A349058 = patterns, complement A350138.
- A349059 = ordered factorizations, complement A350139.
- A349060 = partitions, complement A349061.

Programs

  • Mathematica
    wigQ[y_]:=Or[Length[y]==0,Length[Split[y]]==Length[y] &&Length[Split[Sign[Differences[y]]]]==Length[y]-1];
    whkQ[y_]:=And@@Table[If[EvenQ[m],y[[m]]<=y[[m+1]],y[[m]]>=y[[m+1]]],{m,1,Length[y]-1}];
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],(whkQ[#]||whkQ[-#])&&!wigQ[#]&]],{n,0,10}]

Formula

a(n) = A349052(n) - A025047(n). - Andrew Howroyd, Jan 31 2024

Extensions

a(21) onwards from Andrew Howroyd, Jan 31 2024

A348377 Number of non-alternating compositions of n, excluding twins (x,x).

Original entry on oeis.org

0, 0, 0, 1, 3, 9, 19, 45, 98, 208, 436, 906, 1861, 3803, 7731, 15659, 31628, 63747, 128257, 257722, 517338, 1037652, 2079983, 4167325, 8346203, 16710572, 33449694, 66944254, 133959020, 268028868, 536231902, 1072737537, 2145905284, 4292486690, 8586035992
Offset: 0

Views

Author

Gus Wiseman, Oct 26 2021

Keywords

Comments

First differs from A348382 at a(6) = 19, A348382(6) = 17. The two non-alternating non-twin compositions of 6 that are not an anti-run are (1,2,3) and (3,2,1).
A sequence is alternating if it is alternately strictly increasing and strictly decreasing, starting with either. For example, the partition (3,2,2,2,1) has no alternating permutations, even though it does have the anti-run permutations (2,3,2,1,2) and (2,1,2,3,2). Alternating permutations of multisets are a generalization of alternating or up-down permutations of {1..n}.

Examples

			The a(3) = 1 through a(6) = 19 compositions:
  (1,1,1)  (1,1,2)    (1,1,3)      (1,1,4)
           (2,1,1)    (1,2,2)      (1,2,3)
           (1,1,1,1)  (2,2,1)      (2,2,2)
                      (3,1,1)      (3,2,1)
                      (1,1,1,2)    (4,1,1)
                      (1,1,2,1)    (1,1,1,3)
                      (1,2,1,1)    (1,1,2,2)
                      (2,1,1,1)    (1,1,3,1)
                      (1,1,1,1,1)  (1,2,2,1)
                                   (1,3,1,1)
                                   (2,1,1,2)
                                   (2,2,1,1)
                                   (3,1,1,1)
                                   (1,1,1,1,2)
                                   (1,1,1,2,1)
                                   (1,1,2,1,1)
                                   (1,2,1,1,1)
                                   (2,1,1,1,1)
                                   (1,1,1,1,1,1)
		

Crossrefs

The version for patterns is A000670(n) - A344605(n).
Non-twin compositions are counted by A051049.
The complement is counted by A344604.
An unordered version is A344654.
The complement is ranked by A345167 \/ A007582.
These compositions are ranked by A345168 \ A007582.
Including twins gives A345192, complement A025047.
The version for factorizations is A347706, or A348380 with twins.
The non-anti-run case is A348382.
A001250 counts alternating permutations.
A011782 counts compositions, strict A032020.
A106356 counts compositions by number of maximal anti-runs.
A114901 counts compositions where each part is adjacent to an equal part.
A261983 counts non-anti-run compositions, complement A003242.
A325535 counts inseparable partitions, ranked by A335448.
A344614 counts compositions avoiding (1,2,3) and (3,2,1) adjacent.
A345165 = partitions with no alternating permutations, ranked by A345171.
A345170 = partitions with an alternating permutation, ranked by A345172.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],MatchQ[#,{_,x_,y_,z_,_}/;x<=y<=z||x>=y>=z]&]],{n,0,15}]

Formula

For n > 0, a(n) = A345192(n) - 1 if n is even; otherwise A345192(n).

Extensions

a(26) onwards from Andrew Howroyd, Jan 31 2024

A349797 Number of non-weakly alternating permutations of the multiset of prime factors of n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 2, 0, 0, 0, 2, 0, 4, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 6, 0, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Dec 24 2021

Keywords

Comments

First differs from 2 * A326291 at a(90) = 4, A326291(90) = 3.
The first odd term is a(144) = 7, whose non-weakly alternating permutations are shown in the example below.
We define a sequence to be weakly alternating if it is alternately weakly increasing and weakly decreasing, starting with either. Then a sequence is alternating in the sense of A025047 iff it is a weakly alternating anti-run.
For n > 1, the multiset of prime factors of n is row n of A027746. The prime indices A112798 can also be used.

Examples

			The following are the weakly alternating permutations for selected n.
n = 30    60     72      120     144      180
   ---------------------------------------------
    235   2235   22332   22235   222332   22353
    532   2352   23223   22352   223223   23235
          2532   23322   22532   223322   23325
          3225   32232   23225   232232   23523
          5223           23522   233222   23532
          5322           25223   322223   25323
                         25322   322322   32235
                         32252            32253
                         52232            32352
                         53222            32532
                                          33225
                                          35223
                                          35322
                                          52233
                                          52332
                                          53223
                                          53232
		

Crossrefs

Counting all permutations of prime factors gives A008480.
Compositions not of this type are counted by A349052/A129852/A129853.
Compositions of this type are counted by A349053, ranked by A349057.
The complement is counted by A349056.
Partitions of this type are counted by A349061, complement A349060.
The version counting patterns is A350138, complement A349058.
The version counting ordered factorizations is A350139, complement A349059.
The strong case is counted by A350251, complement A345164.
Positions of nonzero terms are A350353.
A001250 counts alternating permutations, complement A348615.
A025047 = alternating compositions, ranked by A345167, complement A345192.
A056239 adds up prime indices, row sums of A112798, row lengths A001222.
A071321 gives the alternating sum of prime factors, reverse A071322.
A335452 counts anti-run permutations of prime factors, complement A336107.
A345165 counts partitions w/o an alternating permutation, ranked by A345171.
A345170 counts partitions w/ an alternating permutation, ranked by A345172.
A348379 counts factorizations with an alternating permutation.

Programs

  • Mathematica
    whkQ[y_]:=And@@Table[If[EvenQ[m],y[[m]]<=y[[m+1]],y[[m]]>=y[[m+1]]],{m,1,Length[y]-1}];
    Table[Length[Select[Permutations[Flatten[ConstantArray@@@ FactorInteger[n]]], !whkQ[#]&&!whkQ[-#]&]],{n,100}]

Formula

a(n) = A008480(n) - A349056(n).

A350252 Number of non-alternating patterns of length n.

Original entry on oeis.org

0, 0, 1, 7, 53, 439, 4121, 43675, 519249, 6867463, 100228877, 1602238783, 27866817297, 524175098299, 10606844137009, 229807953097903, 5308671596791901, 130261745042452855, 3383732450013895721, 92770140175473602755, 2677110186541556215233
Offset: 0

Views

Author

Gus Wiseman, Jan 13 2022

Keywords

Comments

We define a pattern to be a finite sequence covering an initial interval of positive integers. Patterns are counted by A000670 and ranked by A333217.
A sequence is alternating if it is alternately strictly increasing and strictly decreasing, starting with either. For example, the partition (3,2,2,2,1) has no alternating permutations, even though it does have the anti-run permutations (2,3,2,1,2) and (2,1,2,3,2). An alternating pattern is necessarily an anti-run (A005649).
Conjecture: Also the number of non-weakly up/down (or down/up) patterns of length n. For example:
- The a(3) = 7 non-weakly up/down patterns:
(121), (122), (123), (132), (221), (231), (321)
- The a(3) = 7 non-weakly down/up patterns:
(112), (123), (211), (212), (213), (312), (321)
- The a(3) = 7 non-alternating patterns (see example for more):
(111), (112), (122), (123), (211), (221), (321)

Examples

			The a(2) = 1 and a(3) = 7 non-alternating patterns:
  (1,1)  (1,1,1)
         (1,1,2)
         (1,2,2)
         (1,2,3)
         (2,1,1)
         (2,2,1)
         (3,2,1)
The a(4) = 53 non-alternating patterns:
  2112   3124   4123   1112   2134   1234   3112   2113   1123
  2211   3214   4213   1211   2314   1243   3123   2123   1213
  2212   3412   4312   1212   2341   1324   3211   2213   1223
         3421   4321   1221   2413   1342   3212   2311   1231
                       1222   2431   1423   3213   2312   1232
                                     1432   3312   2313   1233
                                            3321   2321   1312
                                                   2331   1321
                                                          1322
                                                          1323
                                                          1332
		

Crossrefs

The unordered version is A122746.
The version for compositions is A345192, ranked by A345168, weak A349053.
The complement is counted by A345194, weak A349058.
The version for factorizations is A348613, complement A348610, weak A350139.
The strict case (permutations) is A348615, complement A001250.
The weak version for partitions is A349061, complement A349060.
The weak version for perms of prime indices is A349797, complement A349056.
The weak version is A350138.
The version for perms of prime indices is A350251, complement A345164.
A000670 = patterns (ranked by A333217).
A003242 = anti-run compositions, complement A261983, ranked by A333489.
A005649 = anti-run patterns, complement A069321.
A019536 = necklace patterns.
A025047/A129852/A129853 = alternating compositions, ranked by A345167.
A226316 = patterns avoiding (1,2,3), weakly A052709, complement A335515.
A345163 = normal partitions w/ alternating permutation, complement A345162.
A345170 = partitions w/ alternating permutation, complement A345165.
A349055 = normal multisets w/ alternating permutation, complement A349050.

Programs

  • Mathematica
    allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]];
    wigQ[y_]:=Or[Length[y]==0,Length[Split[y]]==Length[y]&& Length[Split[Sign[Differences[y]]]]==Length[y]-1];
    Table[Length[Select[Join@@Permutations/@allnorm[n],!wigQ[#]&]],{n,0,6}]

Formula

a(n) = A000670(n) - A345194(n).

Extensions

Terms a(9) and beyond from Andrew Howroyd, Feb 04 2022

A348609 Numbers with a separable factorization without an alternating permutation.

Original entry on oeis.org

216, 270, 324, 378, 432, 486, 540, 594, 640, 648, 702, 756, 768, 810, 864, 896, 918, 960, 972, 1024, 1026, 1080, 1134, 1152, 1188, 1242, 1280, 1296, 1344, 1350, 1404, 1408, 1458, 1500, 1512, 1536, 1566, 1620, 1664, 1674, 1728, 1750, 1782, 1792, 1836, 1890
Offset: 1

Views

Author

Gus Wiseman, Oct 30 2021

Keywords

Comments

A factorization of n is a weakly increasing sequence of positive integers > 1 with product n.
A multiset is separable if it has a permutation that is an anti-run, meaning there are no adjacent equal parts. Alternatively, a multiset is separable if its greatest multiplicity is greater than the sum of the remaining multiplicities plus one.
A sequence is alternating if it is alternately strictly increasing and strictly decreasing, starting with either. For example, the partition (3,2,2,2,1) has no alternating permutations, even though it does have the anti-run permutations (2,3,2,1,2) and (2,1,2,3,2). Alternating permutations of multisets are a generalization of alternating or up-down permutations of sets.
Note that 216 has separable prime factorization (2*2*2*3*3*3) with an alternating permutation, but the separable factorization (2*3*3*3*4) is has no alternating permutation. See also A345173.

Examples

			The terms and their prime factorizations begin:
  216 = 2*2*2*3*3*3
  270 = 2*3*3*3*5
  324 = 2*2*3*3*3*3
  378 = 2*3*3*3*7
  432 = 2*2*2*2*3*3*3
  486 = 2*3*3*3*3*3
  540 = 2*2*3*3*3*5
  594 = 2*3*3*3*11
  640 = 2*2*2*2*2*2*2*5
  648 = 2*2*2*3*3*3*3
  702 = 2*3*3*3*13
  756 = 2*2*3*3*3*7
  768 = 2*2*2*2*2*2*2*2*3
  810 = 2*3*3*3*3*5
  864 = 2*2*2*2*2*3*3*3
		

Crossrefs

Partitions of this type are counted by A345166, ranked by A345173 (a superset).
Compositions of this type are counted by A345195, ranked by A345169.
A001055 counts factorizations, strict A045778, ordered A074206.
A001250 counts alternating permutations, complement A348615.
A025047 counts alternating compositions, complement A345192, ranked by A345167.
A335434 counts separable factorizations, with twins A348383, complement A333487.
A339846 counts even-length factorizations.
A339890 counts odd-length factorizations.
A345165 counts partitions w/o an alternating permutation, complement A345170.
A347438 counts factorizations with alternating product 1, additive A119620.
A348379 counts factorizations w/ an alternating permutation, complement A348380.
A348610 counts alternating ordered factorizations, complement A348613.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    sepQ[m_]:=Select[Permutations[m],!MatchQ[#,{_,x_,x_,_}]&]!={};
    wigQ[y_]:=Or[Length[y]==0,Length[Split[y]]==Length[y]&&Length[Split[Sign[Differences[y]]]]==Length[y]-1];
    Select[Range[1000],Function[n,Select[facs[n],sepQ[#]&&Select[Permutations[#],wigQ]=={}&]!={}]]
Previous Showing 31-40 of 50 results. Next