cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 48 results. Next

A349054 Number of alternating strict compositions of n. Number of alternating (up/down or down/up) permutations of strict integer partitions of n.

Original entry on oeis.org

1, 1, 1, 3, 3, 5, 9, 11, 15, 21, 35, 41, 59, 75, 103, 155, 193, 255, 339, 443, 569, 841, 1019, 1365, 1743, 2295, 2879, 3785, 5151, 6417, 8301, 10625, 13567, 17229, 21937, 27509, 37145, 45425, 58345, 73071, 93409, 115797, 147391, 182151, 229553, 297061, 365625
Offset: 0

Views

Author

Gus Wiseman, Dec 21 2021

Keywords

Comments

A strict composition of n is a finite sequence of distinct positive integers summing to n.
A sequence is alternating if it is alternately strictly increasing and strictly decreasing, starting with either.
The case starting with an increase (or decrease, it doesn't matter in the enumeration) is counted by A129838.

Examples

			The a(1) = 1 through a(7) = 11 compositions:
  (1)  (2)  (3)    (4)    (5)    (6)      (7)
            (1,2)  (1,3)  (1,4)  (1,5)    (1,6)
            (2,1)  (3,1)  (2,3)  (2,4)    (2,5)
                          (3,2)  (4,2)    (3,4)
                          (4,1)  (5,1)    (4,3)
                                 (1,3,2)  (5,2)
                                 (2,1,3)  (6,1)
                                 (2,3,1)  (1,4,2)
                                 (3,1,2)  (2,1,4)
                                          (2,4,1)
                                          (4,1,2)
		

Crossrefs

Ranking sequences are put in parentheses below.
This is the strict case of A025047/A025048/A025049 (A345167).
This is the alternating case of A032020 (A233564).
The unordered case (partitions) is A065033.
The directed case is A129838.
A001250 = alternating permutations (A349051), complement A348615 (A350250).
A003242 = Carlitz (anti-run) compositions, complement A261983.
A011782 = compositions, unordered A000041.
A345165 = partitions without an alternating permutation (A345171).
A345170 = partitions with an alternating permutation (A345172).
A345192 = non-alternating compositions (A345168).
A345195 = non-alternating anti-run compositions (A345169).
A349800 = weakly but not strongly alternating compositions (A349799).
A349052 = weakly alternating compositions, complement A349053 (A349057).

Programs

  • Maple
    g:= proc(u, o) option remember;
          `if`(u+o=0, 1, add(g(o-1+j, u-j), j=1..u))
        end:
    b:= proc(n, k) option remember; `if`(k<0 or n<0, 0,
          `if`(k=0, `if`(n=0, 2, 0), b(n-k, k)+b(n-k, k-1)))
        end:
    a:= n-> add(b(n, k)*g(k, 0), k=0..floor((sqrt(8*n+1)-1)/2))-1:
    seq(a(n), n=0..46);  # Alois P. Heinz, Dec 22 2021
  • Mathematica
    wigQ[y_]:=Or[Length[y]==0,Length[Split[y]]==Length[y]&&Length[Split[Sign[Differences[y]]]]==Length[y]-1];
    Table[Length[Select[Join@@Permutations/@Select[IntegerPartitions[n],UnsameQ@@#&],wigQ]],{n,0,15}]

Formula

a(n) = 2 * A129838(n) - 1.
G.f.: Sum_{n>0} A001250(n)*x^(n*(n+1)/2)/Product_{k=1..n}(1-x^k).

A349058 Number of weakly alternating patterns of length n.

Original entry on oeis.org

1, 1, 3, 11, 43, 203, 1123, 7235, 53171, 439595, 4037371, 40787579, 449500595, 5366500163, 68997666867, 950475759899, 13966170378907, 218043973366091, 3604426485899203, 62894287709616755, 1155219405655975763, 22279674547003283003, 450151092568978825707
Offset: 0

Views

Author

Gus Wiseman, Dec 04 2021

Keywords

Comments

We define a pattern to be a finite sequence covering an initial interval of positive integers. Patterns are counted by A000670 and ranked by A333217.
We define a sequence to be weakly alternating if it is alternately weakly increasing and weakly decreasing, starting with either.

Examples

			The a(1) = 1 through a(3) = 11 patterns:
  (1)  (1,1)  (1,1,1)
       (1,2)  (1,1,2)
       (2,1)  (1,2,1)
              (1,2,2)
              (1,3,2)
              (2,1,1)
              (2,1,2)
              (2,1,3)
              (2,2,1)
              (2,3,1)
              (3,1,2)
		

Crossrefs

The strict case is A001250, complement A348615.
The strong case of compositions is A025047, ranked by A345167.
The unordered version is A052955.
The strong case is A345194, with twins A344605. Also the directed case.
The version for compositions is A349052, complement A349053.
The version for permutations of prime indices: A349056, complement A349797.
The version for compositions is ranked by A349057.
The version for ordered factorizations is A349059, strong A348610.
The version for partitions is A349060, complement A349061.
A003242 counts Carlitz (anti-run) compositions.
A005649 counts anti-run patterns.
A344604 counts alternating compositions with twins.
A345163 counts normal partitions with an alternating permutation.
A345170 counts partitions w/ an alternating permutation, complement A345165.
A345192 counts non-alternating compositions, ranked by A345168.
A349055 counts multisets w/ an alternating permutation, complement A349050.

Programs

  • Mathematica
    allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s, y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]];
    whkQ[y_]:=And@@Table[If[EvenQ[m],y[[m]]<=y[[m+1]],y[[m]]>=y[[m+1]]],{m,1,Length[y]-1}];
    Table[Length[Select[Join@@Permutations/@allnorm[n],whkQ[#]||whkQ[-#]&]],{n,0,6}]
  • PARI
    R(n,k)={my(v=vector(k,i,1), u=vector(n)); for(r=1, n, if(r%2==0, my(s=v[k]); forstep(i=k, 2, -1, v[i] = s - v[i-1]); v[1] = s); for(i=2, k, v[i] += v[i-1]); u[r]=v[k]); u}
    seq(n)= {concat([1], -vector(n,i,1) + 2*sum(k=1, n, R(n, k)*sum(r=k, n, binomial(r, k)*(-1)^(r-k)) ) )} \\ Andrew Howroyd, Jan 13 2024

Extensions

a(9)-a(18) from Alois P. Heinz, Dec 10 2021
a(19) onwards from Andrew Howroyd, Jan 13 2024

A349800 Number of integer compositions of n that are weakly alternating and have at least two adjacent equal parts.

Original entry on oeis.org

0, 0, 1, 1, 4, 9, 16, 33, 62, 113, 205, 373, 664, 1190, 2113, 3744, 6618, 11683, 20564, 36164, 63489, 111343, 195042, 341357, 596892, 1042976, 1821179, 3178145, 5543173, 9663545, 16839321, 29332231, 51075576, 88908912, 154722756, 269186074, 468221264
Offset: 0

Views

Author

Gus Wiseman, Dec 16 2021

Keywords

Comments

We define a sequence to be weakly alternating if it is alternately weakly increasing and weakly decreasing, starting with either.
This sequence counts compositions that are weakly but not strongly alternating; also weakly alternating non-anti-run compositions.

Examples

			The a(2) = 1 through a(6) = 16 compositions:
  (1,1)  (1,1,1)  (2,2)      (1,1,3)      (3,3)
                  (1,1,2)    (1,2,2)      (1,1,4)
                  (2,1,1)    (2,2,1)      (2,2,2)
                  (1,1,1,1)  (3,1,1)      (4,1,1)
                             (1,1,1,2)    (1,1,1,3)
                             (1,1,2,1)    (1,1,2,2)
                             (1,2,1,1)    (1,1,3,1)
                             (2,1,1,1)    (1,3,1,1)
                             (1,1,1,1,1)  (2,2,1,1)
                                          (3,1,1,1)
                                          (1,1,1,1,2)
                                          (1,1,1,2,1)
                                          (1,1,2,1,1)
                                          (1,2,1,1,1)
                                          (2,1,1,1,1)
                                          (1,1,1,1,1,1)
		

Crossrefs

This is the weakly alternating case of A345192, ranked by A345168.
The case of partitions is A349795, ranked by A350137.
The version counting permutations of prime indices is A349798.
These compositions are ranked by A349799.
A001250 = alternating permutations, ranked by A349051, complement A348615.
A003242 = Carlitz (anti-run) compositions, ranked by A333489.
A025047/A025048/A025049 = alternating compositions, ranked by A345167.
A261983 = non-anti-run compositions, ranked by A348612.
A345165 = partitions without an alternating permutation, ranked by A345171.
A345170 = partitions with an alternating permutation, ranked by A345172.
A345173 = non-alternating anti-run partitions, ranked by A345166.
A345195 = non-alternating anti-run compositions, ranked by A345169.
A348377 = non-alternating non-twin compositions.
A349801 = non-alternating partitions, ranked by A289553.
Weakly alternating:
- A349052 = compositions, directed A129852/A129853, complement A349053.
- A349056 = permutations of prime indices, complement A349797.
- A349057 = complement of standard composition numbers (too dense).
- A349058 = patterns, complement A350138.
- A349059 = ordered factorizations, complement A350139.
- A349060 = partitions, complement A349061.

Programs

  • Mathematica
    wigQ[y_]:=Or[Length[y]==0,Length[Split[y]]==Length[y] &&Length[Split[Sign[Differences[y]]]]==Length[y]-1];
    whkQ[y_]:=And@@Table[If[EvenQ[m],y[[m]]<=y[[m+1]],y[[m]]>=y[[m+1]]],{m,1,Length[y]-1}];
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],(whkQ[#]||whkQ[-#])&&!wigQ[#]&]],{n,0,10}]

Formula

a(n) = A349052(n) - A025047(n). - Andrew Howroyd, Jan 31 2024

Extensions

a(21) onwards from Andrew Howroyd, Jan 31 2024

A348377 Number of non-alternating compositions of n, excluding twins (x,x).

Original entry on oeis.org

0, 0, 0, 1, 3, 9, 19, 45, 98, 208, 436, 906, 1861, 3803, 7731, 15659, 31628, 63747, 128257, 257722, 517338, 1037652, 2079983, 4167325, 8346203, 16710572, 33449694, 66944254, 133959020, 268028868, 536231902, 1072737537, 2145905284, 4292486690, 8586035992
Offset: 0

Views

Author

Gus Wiseman, Oct 26 2021

Keywords

Comments

First differs from A348382 at a(6) = 19, A348382(6) = 17. The two non-alternating non-twin compositions of 6 that are not an anti-run are (1,2,3) and (3,2,1).
A sequence is alternating if it is alternately strictly increasing and strictly decreasing, starting with either. For example, the partition (3,2,2,2,1) has no alternating permutations, even though it does have the anti-run permutations (2,3,2,1,2) and (2,1,2,3,2). Alternating permutations of multisets are a generalization of alternating or up-down permutations of {1..n}.

Examples

			The a(3) = 1 through a(6) = 19 compositions:
  (1,1,1)  (1,1,2)    (1,1,3)      (1,1,4)
           (2,1,1)    (1,2,2)      (1,2,3)
           (1,1,1,1)  (2,2,1)      (2,2,2)
                      (3,1,1)      (3,2,1)
                      (1,1,1,2)    (4,1,1)
                      (1,1,2,1)    (1,1,1,3)
                      (1,2,1,1)    (1,1,2,2)
                      (2,1,1,1)    (1,1,3,1)
                      (1,1,1,1,1)  (1,2,2,1)
                                   (1,3,1,1)
                                   (2,1,1,2)
                                   (2,2,1,1)
                                   (3,1,1,1)
                                   (1,1,1,1,2)
                                   (1,1,1,2,1)
                                   (1,1,2,1,1)
                                   (1,2,1,1,1)
                                   (2,1,1,1,1)
                                   (1,1,1,1,1,1)
		

Crossrefs

The version for patterns is A000670(n) - A344605(n).
Non-twin compositions are counted by A051049.
The complement is counted by A344604.
An unordered version is A344654.
The complement is ranked by A345167 \/ A007582.
These compositions are ranked by A345168 \ A007582.
Including twins gives A345192, complement A025047.
The version for factorizations is A347706, or A348380 with twins.
The non-anti-run case is A348382.
A001250 counts alternating permutations.
A011782 counts compositions, strict A032020.
A106356 counts compositions by number of maximal anti-runs.
A114901 counts compositions where each part is adjacent to an equal part.
A261983 counts non-anti-run compositions, complement A003242.
A325535 counts inseparable partitions, ranked by A335448.
A344614 counts compositions avoiding (1,2,3) and (3,2,1) adjacent.
A345165 = partitions with no alternating permutations, ranked by A345171.
A345170 = partitions with an alternating permutation, ranked by A345172.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],MatchQ[#,{_,x_,y_,z_,_}/;x<=y<=z||x>=y>=z]&]],{n,0,15}]

Formula

For n > 0, a(n) = A345192(n) - 1 if n is even; otherwise A345192(n).

Extensions

a(26) onwards from Andrew Howroyd, Jan 31 2024

A350252 Number of non-alternating patterns of length n.

Original entry on oeis.org

0, 0, 1, 7, 53, 439, 4121, 43675, 519249, 6867463, 100228877, 1602238783, 27866817297, 524175098299, 10606844137009, 229807953097903, 5308671596791901, 130261745042452855, 3383732450013895721, 92770140175473602755, 2677110186541556215233
Offset: 0

Views

Author

Gus Wiseman, Jan 13 2022

Keywords

Comments

We define a pattern to be a finite sequence covering an initial interval of positive integers. Patterns are counted by A000670 and ranked by A333217.
A sequence is alternating if it is alternately strictly increasing and strictly decreasing, starting with either. For example, the partition (3,2,2,2,1) has no alternating permutations, even though it does have the anti-run permutations (2,3,2,1,2) and (2,1,2,3,2). An alternating pattern is necessarily an anti-run (A005649).
Conjecture: Also the number of non-weakly up/down (or down/up) patterns of length n. For example:
- The a(3) = 7 non-weakly up/down patterns:
(121), (122), (123), (132), (221), (231), (321)
- The a(3) = 7 non-weakly down/up patterns:
(112), (123), (211), (212), (213), (312), (321)
- The a(3) = 7 non-alternating patterns (see example for more):
(111), (112), (122), (123), (211), (221), (321)

Examples

			The a(2) = 1 and a(3) = 7 non-alternating patterns:
  (1,1)  (1,1,1)
         (1,1,2)
         (1,2,2)
         (1,2,3)
         (2,1,1)
         (2,2,1)
         (3,2,1)
The a(4) = 53 non-alternating patterns:
  2112   3124   4123   1112   2134   1234   3112   2113   1123
  2211   3214   4213   1211   2314   1243   3123   2123   1213
  2212   3412   4312   1212   2341   1324   3211   2213   1223
         3421   4321   1221   2413   1342   3212   2311   1231
                       1222   2431   1423   3213   2312   1232
                                     1432   3312   2313   1233
                                            3321   2321   1312
                                                   2331   1321
                                                          1322
                                                          1323
                                                          1332
		

Crossrefs

The unordered version is A122746.
The version for compositions is A345192, ranked by A345168, weak A349053.
The complement is counted by A345194, weak A349058.
The version for factorizations is A348613, complement A348610, weak A350139.
The strict case (permutations) is A348615, complement A001250.
The weak version for partitions is A349061, complement A349060.
The weak version for perms of prime indices is A349797, complement A349056.
The weak version is A350138.
The version for perms of prime indices is A350251, complement A345164.
A000670 = patterns (ranked by A333217).
A003242 = anti-run compositions, complement A261983, ranked by A333489.
A005649 = anti-run patterns, complement A069321.
A019536 = necklace patterns.
A025047/A129852/A129853 = alternating compositions, ranked by A345167.
A226316 = patterns avoiding (1,2,3), weakly A052709, complement A335515.
A345163 = normal partitions w/ alternating permutation, complement A345162.
A345170 = partitions w/ alternating permutation, complement A345165.
A349055 = normal multisets w/ alternating permutation, complement A349050.

Programs

  • Mathematica
    allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]];
    wigQ[y_]:=Or[Length[y]==0,Length[Split[y]]==Length[y]&& Length[Split[Sign[Differences[y]]]]==Length[y]-1];
    Table[Length[Select[Join@@Permutations/@allnorm[n],!wigQ[#]&]],{n,0,6}]

Formula

a(n) = A000670(n) - A345194(n).

Extensions

Terms a(9) and beyond from Andrew Howroyd, Feb 04 2022

A349051 Numbers k such that the k-th composition in standard order is an alternating permutation of {1..k} for some k.

Original entry on oeis.org

0, 1, 5, 6, 38, 41, 44, 50, 553, 562, 582, 593, 610, 652, 664, 708, 788, 808, 16966, 17036, 17048, 17172, 17192, 17449, 17458, 17542, 17676, 17712, 17940, 18000, 18513, 18530, 18593, 18626, 18968, 18992, 19496, 19536, 20625, 20676, 20769, 20868, 21256, 22600
Offset: 1

Views

Author

Gus Wiseman, Nov 08 2021

Keywords

Comments

The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.
A sequence is alternating if it is alternately strictly increasing and strictly decreasing, starting with either. For example, the partition (3,2,2,2,1) has no alternating permutations, even though it does have the anti-run permutations (2,3,2,1,2) and (2,1,2,3,2).

Examples

			The sequence together with the corresponding compositions begins:
        0: ()
        1: (1)
        5: (2,1)
        6: (1,2)
       38: (3,1,2)
       41: (2,3,1)
       44: (2,1,3)
       50: (1,3,2)
      553: (4,2,3,1)
      562: (4,1,3,2)
      582: (3,4,1,2)
      593: (3,2,4,1)
      610: (3,1,4,2)
      652: (2,4,1,3)
      664: (2,3,1,4)
      708: (2,1,4,3)
      788: (1,4,2,3)
      808: (1,3,2,4)
    16966: (5,3,4,1,2)
    17036: (5,2,4,1,3)
		

Crossrefs

These permutations are counted by A001250, complement A348615.
Compositions of this type are counted by A025047, complement A345192.
Subset of A333218, which ranks permutations of initial intervals.
Subset of A345167, which ranks alternating compositions, complement A345168.
A003242 counts Carlitz (anti-run) compositions.
A345163 counts normal partitions with an alternating permutation.
A345164 counts alternating permutations of prime indices.
A345170 counts partitions with an alternating permutation.
Compositions in standard order are the rows of A066099:
- Number of parts is given by A000120, distinct A334028.
- Sum and product of parts are given by A070939 and A124758.
- Maximum and minimum parts are given by A333766 and A333768.
- GCD and LCM are given by A326674 and A333226.
- Maximal runs and anti-runs are counted by A124767 and A333381.
- Heinz number is given by A333219.
- Runs-resistance is given by A333628.
- Partitions and strict partitions are ranked by A114994 and A333256.
- Multisets and sets are ranked by A225620 and A333255.
- Strict and constant compositions are ranked by A233564 and A272919.
- Carlitz (anti-run) compositions are ranked by A333489.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[ Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    wigQ[y_]:=Or[Length[y]==0,Length[Split[y]]== Length[y]&&Length[Split[Sign[Differences[y]]]]==Length[y]-1];
    Select[Range[0,1000],Sort[stc[#]]==Range[Length[stc[#]]]&&wigQ[stc[#]]&]

Formula

Equals A333218 (permutation) /\ A345167 (alternating).

A349799 Numbers k such that the k-th composition in standard order is weakly alternating but has at least two adjacent equal parts.

Original entry on oeis.org

3, 7, 10, 11, 14, 15, 19, 21, 23, 26, 27, 28, 29, 30, 31, 35, 36, 39, 42, 43, 47, 51, 55, 56, 57, 58, 59, 60, 61, 62, 63, 67, 71, 73, 74, 79, 83, 84, 85, 86, 87, 90, 91, 94, 95, 99, 100, 103, 106, 111, 112, 113, 114, 115, 118, 119, 120, 121, 122, 123, 124, 125
Offset: 1

Views

Author

Gus Wiseman, Dec 15 2021

Keywords

Comments

We define a sequence to be weakly alternating if it is alternately weakly increasing and weakly decreasing, starting with either.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.
This sequence ranks compositions that are weakly but not strongly alternating.

Examples

			The terms and corresponding compositions begin:
   3: (1,1)
   7: (1,1,1)
  10: (2,2)
  11: (2,1,1)
  14: (1,1,2)
  15: (1,1,1,1)
  19: (3,1,1)
  21: (2,2,1)
  23: (2,1,1,1)
  26: (1,2,2)
  27: (1,2,1,1)
  28: (1,1,3)
  29: (1,1,2,1)
  30: (1,1,1,2)
  31: (1,1,1,1,1)
		

Crossrefs

Partitions of this type are counted by A349795, ranked by A350137.
Permutations of prime indices of this type are counted by A349798.
These compositions are counted by A349800.
A001250 = alternating permutations, ranked by A349051, complement A348615.
A003242 = Carlitz (anti-run) compositions, ranked by A333489.
A025047/A025048/A025049 = alternating compositions, ranked by A345167.
A261983 = non-anti-run compositions, ranked by A348612.
A345164 = alternating permutations of prime indices, with twins A344606.
A345165 = partitions without an alternating permutation, ranked by A345171.
A345170 = partitions with an alternating permutation, ranked by A345172.
A345166 = separable partitions with no alternations, ranked by A345173.
A345192 = non-alternating compositions, ranked by A345168.
A345195 = non-alternating anti-run compositions, ranked by A345169.
A349052/A129852/A129853 = weakly alternating compositions.
A349053 = non-weakly alternating compositions, ranked by A349057.
A349056 = weak alternations of prime indices, complement A349797.
A349060 = weak alternations of partitions, complement A349061.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[ Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    whkQ[y_]:=And@@Table[If[EvenQ[m],y[[m]]<=y[[m+1]],y[[m]]>=y[[m+1]]],{m,1,Length[y]-1}];
    Select[Range[0,100],(whkQ[stc[#]]||whkQ[-stc[#]])&&MatchQ[stc[#],{_,x_,x_,_}]&]

Formula

A349794 Numbers whose prime signature has an odd term other than the first or last.

Original entry on oeis.org

30, 42, 60, 66, 70, 78, 84, 102, 105, 110, 114, 120, 130, 132, 138, 140, 150, 154, 156, 165, 168, 170, 174, 182, 186, 190, 195, 204, 210, 220, 222, 228, 230, 231, 238, 240, 246, 255, 258, 260, 264, 266, 270, 273, 276, 280, 282, 285, 286, 290, 294, 300, 308
Offset: 1

Views

Author

Gus Wiseman, Dec 06 2021

Keywords

Comments

A number's prime signature (row n of A124010) is the sequence of positive exponents in its prime factorization.
Also numbers whose multiset of prime factors is not weakly alternating, where we define a sequence to be weakly alternating if it is alternately weakly increasing and weakly decreasing, starting with either. This sequence looks at the somewhat degenerate case where no strict decreases are allowed.

Examples

			The terms and their prime indices begin:
   30: {1,2,3}
   42: {1,2,4}
   60: {1,1,2,3}
   66: {1,2,5}
   70: {1,3,4}
   78: {1,2,6}
   84: {1,1,2,4}
  102: {1,2,7}
  105: {2,3,4}
  110: {1,3,5}
  114: {1,2,8}
  120: {1,1,1,2,3}
  130: {1,3,6}
  132: {1,1,2,5}
  138: {1,2,9}
		

Crossrefs

The complement for compositions is A025047, ranked by A345167.
Signatures of this type are counted by A274230, complement A027383.
The strong case is A289553, complement A167171.
The strong case for compositions is A345192, ranked by A345168.
The version for compositions is A349053, ranked by A349057.
These partitions are counted by A349061, complement A349060, strong A349801.
The non-strict case is counted by A349795.
A001250 counts alternating permutations, complement A348615.
A096441 counts weakly alternating partitions if 0 is appended.
A345164 counts alternating permutations of prime indices, weak A349056.
A345170 counts partitions w/ an alternating permutation, ranked by A345172.
A349052 counts weakly alternating compositions.
A349059 counts weakly alternating ordered factorizations, strong A348610.

Programs

  • Mathematica
    Select[Range[100],PrimeNu[#]>1&&!And@@EvenQ/@Take[Last/@FactorInteger[#],{2,-2}]&]

A350138 Number of non-weakly alternating patterns of length n.

Original entry on oeis.org

0, 0, 0, 2, 32, 338, 3560, 40058, 492664, 6647666, 98210192, 1581844994, 27642067000, 521491848218, 10572345303576, 229332715217954, 5301688511602448, 130152723055769810, 3381930236770946120, 92738693031618794378, 2676532576838728227352
Offset: 0

Views

Author

Gus Wiseman, Dec 24 2021

Keywords

Comments

We define a pattern to be a finite sequence covering an initial interval of positive integers. Patterns are counted by A000670 and ranked by A333217.
We define a sequence to be weakly alternating if it is alternately weakly increasing and weakly decreasing, starting with either.
Conjecture: The directed cases, which count non-weakly up/down or non-weakly down/up patterns, are both equal to the strong case: A350252.

Examples

			The a(4) = 32 patterns:
  (1,1,2,3)  (2,1,1,2)  (3,1,1,2)  (4,1,2,3)
  (1,2,2,1)  (2,1,1,3)  (3,1,2,3)  (4,2,1,3)
  (1,2,3,1)  (2,1,2,3)  (3,1,2,4)  (4,3,1,2)
  (1,2,3,2)  (2,1,3,4)  (3,2,1,1)  (4,3,2,1)
  (1,2,3,3)  (2,3,2,1)  (3,2,1,2)
  (1,2,3,4)  (2,3,3,1)  (3,2,1,3)
  (1,2,4,3)  (2,3,4,1)  (3,2,1,4)
  (1,3,2,1)  (2,4,3,1)  (3,3,2,1)
  (1,3,3,2)             (3,4,2,1)
  (1,3,4,2)
  (1,4,3,2)
		

Crossrefs

The unordered version is A274230, complement A052955.
The strong case of compositions is A345192, ranked by A345168.
The strict case is A348615, complement A001250.
For compositions we have A349053, complement A349052, ranked by A349057.
The complement is counted by A349058.
The version for partitions is A349061, complement A349060.
The version for permutations of prime indices: A349797, complement A349056.
The version for ordered factorizations is A350139, complement A349059.
The strong case is A350252, complement A345194. Also the directed case?
A003242 = Carlitz compositions, complement A261983, ranked by A333489.
A005649 = anti-run patterns, complement A069321.
A025047/A129852/A129853 = alternating compositions, ranked by A345167.
A345163 = normal partitions w/ alternating permutation, complement A345162.
A345170 = partitions w/ alternating permutation, complement A345165.
A349055 = normal multisets w/ alternating permutation, complement A349050.

Programs

  • Mathematica
    allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]];
    whkQ[y_]:=And@@Table[If[EvenQ[m],y[[m]]<=y[[m+1]],y[[m]]>=y[[m+1]]],{m,1,Length[y]-1}];
    Table[Length[Select[Join@@Permutations/@allnorm[n],!whkQ[#]&&!whkQ[-#]&]],{n,0,6}]
  • PARI
    R(n,k)={my(v=vector(k,i,1), u=vector(n)); for(r=1, n, if(r%2==0, my(s=v[k]); forstep(i=k, 2, -1, v[i] = s - v[i-1]); v[1] = s); for(i=2, k, v[i] += v[i-1]); u[r]=v[k]); u}
    seq(n)= {concat([0], vector(n,i,1) + sum(k=1, n, (vector(n,i,k^i) - 2*R(n, k))*sum(r=k, n, binomial(r, k)*(-1)^(r-k)) ) )} \\ Andrew Howroyd, Jan 13 2024

Formula

a(n) = A000670(n) - A349058(n).

Extensions

a(9) onwards from Andrew Howroyd, Jan 13 2024

A349801 Number of integer partitions of n into three or more parts or into two equal parts.

Original entry on oeis.org

0, 0, 1, 1, 3, 4, 8, 11, 18, 25, 37, 50, 71, 94, 128, 168, 223, 288, 376, 480, 617, 781, 991, 1243, 1563, 1945, 2423, 2996, 3704, 4550, 5589, 6826, 8333, 10126, 12293, 14865, 17959, 21618, 25996, 31165, 37318, 44562, 53153, 63239, 75153, 89111, 105535, 124730
Offset: 0

Views

Author

Gus Wiseman, Dec 23 2021

Keywords

Comments

This sequence arose as the following degenerate case. If we define a sequence to be alternating if it is alternately strictly increasing and strictly decreasing, starting with either, then a(n) is the number of non-alternating integer partitions of n. Under this interpretation:
- The non-strict case is A047967, weak A349796, weak complement A349795.
- The complement is counted by A065033(n) = ceiling(n/2) for n > 0.
- These partitions are ranked by A289553 \ {1}, complement A167171 \/ {1}.
- The version for compositions is A345192, ranked by A345168.
- The weak version for compositions is A349053, ranked by A349057.
- The weak version is A349061, complement A349060, ranked by A349794.

Examples

			The a(2) = 1 through a(7) = 11 partitions:
  (11)  (111)  (22)    (221)    (33)      (322)
               (211)   (311)    (222)     (331)
               (1111)  (2111)   (321)     (421)
                       (11111)  (411)     (511)
                                (2211)    (2221)
                                (3111)    (3211)
                                (21111)   (4111)
                                (111111)  (22111)
                                          (31111)
                                          (211111)
                                          (1111111)
		

Crossrefs

A000041 counts partitions, ordered A011782.
A001250 counts alternating permutations, complement A348615.
A004250 counts partitions into three or more parts, strict A347548.
A025047/A025048/A025049 count alternating compositions, ranked by A345167.
A096441 counts weakly alternating 0-appended partitions.
A345165 counts partitions w/ no alternating permutation, complement A345170.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],MatchQ[#,{x_,x_}|{,,__}]&]],{n,0,10}]

Formula

a(1) = 0; a(n > 0) = A000041(n) - ceiling(n/2).
Previous Showing 31-40 of 48 results. Next