cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 34 results. Next

A344740 Number of integer partitions of n with a permutation that has no consecutive monotone triple, i.e., no triple (..., x, y, z, ...) such that either x <= y <= z or x >= y >= z.

Original entry on oeis.org

1, 1, 2, 2, 4, 5, 7, 10, 15, 19, 26, 36, 49, 64, 85, 111, 147, 191, 245, 315, 405, 515, 652, 823, 1036, 1295, 1617, 2011, 2493, 3076, 3788, 4650, 5696, 6952, 8464, 10280, 12461, 15059, 18163, 21858, 26255, 31463, 37642, 44933, 53555, 63704, 75654, 89683, 106163, 125445, 148021
Offset: 0

Views

Author

Gus Wiseman, Jun 12 2021

Keywords

Comments

These partitions are characterized by either being a twin (x,x) or having a wiggly permutation. A sequence is wiggly if it is alternately strictly increasing and strictly decreasing, starting with either. For example, the partition (3,2,2,2,1) has no wiggly permutations, even though it has anti-run permutations (2,3,2,1,2) and (2,1,2,3,2).

Examples

			The a(1) = 1 through a(8) = 15 partitions:
  (1)  (2)    (3)    (4)      (5)      (6)        (7)          (8)
       (1,1)  (2,1)  (2,2)    (3,2)    (3,3)      (4,3)        (4,4)
                     (3,1)    (4,1)    (4,2)      (5,2)        (5,3)
                     (2,1,1)  (2,2,1)  (5,1)      (6,1)        (6,2)
                              (3,1,1)  (3,2,1)    (3,2,2)      (7,1)
                                       (4,1,1)    (3,3,1)      (3,3,2)
                                       (2,2,1,1)  (4,2,1)      (4,2,2)
                                                  (5,1,1)      (4,3,1)
                                                  (3,2,1,1)    (5,2,1)
                                                  (2,2,1,1,1)  (6,1,1)
                                                               (3,2,2,1)
                                                               (3,3,1,1)
                                                               (4,2,1,1)
                                                               (2,2,2,1,1)
                                                               (3,2,1,1,1)
For example, the partition (3,2,2,1) has the two wiggly permutations (2,3,1,2) and (2,1,3,2), so is counted under a(8).
		

Crossrefs

The complement is counted by A344654.
The Heinz numbers of these partitions are A344742, complement A344653.
The normal case starts 1, 1, 1, then becomes A345163, complement A345162.
Not counting twins (x,x) gives A345170, ranked by A345172.
A001250 counts wiggly permutations.
A003242 counts anti-run compositions.
A025047 counts wiggly compositions (ascend: A025048, descend: A025049).
A325534 counts separable partitions, ranked by A335433.
A325535 counts inseparable partitions, ranked by A335448.
A344604 counts wiggly compositions with twins.
A344605 counts wiggly patterns with twins.
A344606 counts wiggly permutations of prime indices with twins.
A344614 counts compositions with no consecutive strictly monotone triple.
A345164 counts wiggly permutations of prime indices.
A345165 counts partitions without a wiggly permutation, ranked by A345171.
A345192 counts non-wiggly compositions.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Select[Permutations[#],!MatchQ[#,{_,x_,y_,z_,_}/;x<=y<=z||x>=y>=z]&]!={}&]],{n,0,15}]

Formula

a(n) = A345170(n) for n odd; a(n) = A345170(n) + 1 for n even.

Extensions

a(26)-a(32) from Robert Price, Jun 22 2021
a(33) onwards from Joseph Likar, Sep 05 2023

A345163 Number of integer partitions of n with an alternating permutation covering an initial interval of positive integers.

Original entry on oeis.org

1, 1, 0, 1, 1, 1, 2, 2, 3, 3, 4, 6, 7, 8, 11, 12, 16, 20, 23, 27, 34, 41, 48, 57, 68, 80, 94, 110, 130, 153, 175, 203, 239, 275, 317, 365, 420, 483, 553, 632, 720, 825, 938, 1064, 1211, 1370, 1550, 1755, 1982, 2235, 2517, 2830, 3182, 3576, 4006, 4487, 5027, 5619, 6275, 7007, 7812
Offset: 0

Views

Author

Gus Wiseman, Jun 12 2021

Keywords

Comments

A sequence is alternating if it is alternately strictly increasing and strictly decreasing, starting with either. For example, the partition (3,3,2,2,2,2,1) has no alternating permutations, even though it has the anti-run permutations (2,3,2,3,2,1,2), (2,3,2,1,2,3,2), and (2,1,2,3,2,3,2).
A partition with k parts is alternating if and only every part has a multiplicity no greater than k/2, except either the smallest or largest part may have a multiplicity of (k+1)/2 when k is odd. - Andrew Howroyd, Jan 31 2024

Examples

			The a(3) = 1 through a(12) = 7 partitions:
  21  211  221  321   3211   3221   3321    4321     33221    33321
                2211  22111  22211  32211   33211    43211    43221
                             32111  222111  322111   322211   332211
                                            2221111  332111   432111
                                                     2222111  3222111
                                                     3221111  3321111
                                                              22221111
For example, the partition (3,3,2,1,1,1,1) has the alternating permutations (1,3,1,3,1,2,1), (1,3,1,2,1,3,1), and (1,2,1,3,1,3,1), so is counted under a(12).
		

Crossrefs

Not requiring an alternating permutation gives A000670, ranked by A333217.
The complement in covering partitions is counted by A345162.
Not requiring normality gives A345170, ranked by A345172.
A000041 counts integer partitions.
A001250 counts alternating permutations.
A003242 counts anti-run compositions.
A005649 counts anti-run patterns.
A025047 counts alternating or wiggly compositions, also A025048, A025049.
A325534 counts separable partitions, ranked by A335433.
A325535 counts inseparable partitions, ranked by A335448.
A344605 counts alternating patterns with twins.
A345164 counts alternating permutations of prime indices.
A345165 counts partitions without a alternating permutation, ranked by A345171.
A349051 ranks alternating compositions.

Programs

  • Mathematica
    normQ[m_]:=m=={}||Union[m]==Range[Max[m]];
    wigQ[y_]:=Or[Length[y]==0,Length[Split[y]]==Length[y]&&Length[Split[Sign[Differences[y]]]]==Length[y]-1];
    Table[Length[Select[IntegerPartitions[n],normQ[#]&&Select[Permutations[#],wigQ]!={}&]],{n,0,15}]
  • PARI
    \\ See also A345162 for a faster program.
    ok(k,p)={my(S=Set(p)); foreach(S, t, my(c=k+#p-2*(1+#select(x->x==t, p))); if(c<0, return(c==-1 && (t==1||t==k)))); 1}
    a(n)={sum(k=1, (sqrtint(8*n+1)-1)\2, s=0; forpart(p=n-binomial(k+1,2), s+=ok(k,Vec(p)), k); s)} \\ Andrew Howroyd, Jan 31 2024

Formula

The Heinz numbers of these partitions are A333217 /\ A345172.
a(n) = A000009(n) - A345162(n). - Andrew Howroyd, Jan 31 2024

Extensions

a(26) onwards from Andrew Howroyd, Jan 31 2024

A348379 Number of factorizations of n with an alternating permutation.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 4, 1, 2, 2, 3, 1, 4, 1, 4, 2, 2, 1, 6, 1, 2, 2, 4, 1, 5, 1, 5, 2, 2, 2, 8, 1, 2, 2, 6, 1, 5, 1, 4, 4, 2, 1, 10, 1, 4, 2, 4, 1, 6, 2, 6, 2, 2, 1, 11, 1, 2, 4, 6, 2, 5, 1, 4, 2, 5, 1, 15, 1, 2, 4, 4, 2, 5, 1, 10, 3, 2, 1, 11, 2
Offset: 1

Views

Author

Gus Wiseman, Oct 28 2021

Keywords

Comments

First differs from A335434 at a(216) = 27, A335434(216) = 28. Also differs from A335434 at a(270) = 19, A335434(270) = 20.
A factorization of n is a weakly increasing sequence of positive integers > 1 with product n.
All of the counted factorizations are separable (A335434).
A sequence is alternating if it is alternately strictly increasing and strictly decreasing, starting with either. For example, the partition (3,2,2,2,1) has no alternating permutations, even though it does have the anti-run permutations (2,3,2,1,2) and (2,1,2,3,2). Alternating permutations of multisets are a generalization of alternating or up-down permutations of {1..n}.

Examples

			The a(270) = 19 factorizations:
  (2*3*3*15)  (2*3*45)  (2*135)  (270)
  (2*3*5*9)   (2*5*27)  (3*90)
  (3*3*5*6)   (2*9*15)  (5*54)
              (3*3*30)  (6*45)
              (3*5*18)  (9*30)
              (3*6*15)  (10*27)
              (3*9*10)  (15*18)
              (5*6*9)
		

Crossrefs

Partitions not of this type are counted by A345165, ranked by A345171.
Partitions of this type are counted by A345170, ranked by A345172.
Twins and partitions of this type are counted by A344740, ranked by A344742.
The case with twins is A347050.
The complement is counted by A348380, without twins A347706.
The ordered version is A348610.
A001055 counts factorizations, strict A045778, ordered A074206.
A001250 counts alternating permutations.
A025047 counts alternating or wiggly compositions, ranked by A345167.
A339846 counts even-length factorizations.
A339890 counts odd-length factorizations.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    wigQ[y_]:=Or[Length[y]==0,Length[Split[y]]==Length[y]&&Length[Split[Sign[Differences[y]]]]==Length[y]-1];
    Table[Length[Select[facs[n],Select[Permutations[#],wigQ]!={}&]],{n,100}]

Formula

a(2^n) = A345170(n).

A349057 Numbers k such that the k-th composition in standard order is not weakly alternating.

Original entry on oeis.org

37, 46, 52, 53, 69, 75, 78, 92, 93, 101, 104, 105, 107, 110, 116, 117, 133, 137, 139, 142, 150, 151, 156, 157, 165, 174, 180, 181, 184, 185, 186, 187, 190, 197, 200, 201, 203, 206, 208, 209, 210, 211, 214, 215, 220, 221, 229, 232, 233, 235, 238, 244, 245, 261
Offset: 1

Views

Author

Gus Wiseman, Dec 04 2021

Keywords

Comments

We define a sequence to be weakly alternating if it is alternately weakly increasing and weakly decreasing, starting with either.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The terms and corresponding compositions begin:
   37: (3,2,1)
   46: (2,1,1,2)
   52: (1,2,3)
   53: (1,2,2,1)
   69: (4,2,1)
   75: (3,2,1,1)
   78: (3,1,1,2)
   92: (2,1,1,3)
   93: (2,1,1,2,1)
  101: (1,3,2,1)
  104: (1,2,4)
  105: (1,2,3,1)
  107: (1,2,2,1,1)
  110: (1,2,1,1,2)
  116: (1,1,2,3)
  117: (1,1,2,2,1)
		

Crossrefs

The strong case is A345168, complement A345167, counted by A345192.
The strong anti-run case is A345169, counted by A345195.
Including all non-anti-runs gives A348612, complement A333489.
These compositions are counted by A349053, complement A349052.
The directed cases are counted by A129852 (incr.) and A129853 (decr.).
The complement for patterns is A349058, strong A345194.
The complement for ordered factorizations is A349059, strong A348610.
Partitions of this type are counted by A349061, complement A349060.
Partitions of this type are ranked by A349794.
Non-strict partitions of this type are counted by A349796.
Permutations of prime indices of this type are counted by A349797.
A001250 counts alternating permutations, complement A348615.
A003242 counts Carlitz (anti-run) compositions, complement A261983.
A011782 counts compositions.
A025047 counts alternating/wiggly compositions, directed A025048, A025049.
A345164 counts alternating permutations of prime indices, weak A349056.
A345165 counts partitions w/o an alternating permutation, ranked by A345171.
A345170 counts partitions w/ an alternating permutation, ranked by A345172.
A349054 counts strict alternating compositions.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[ Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    whkQ[y_]:=And@@Table[If[EvenQ[m], y[[m]]<=y[[m+1]],y[[m]]>=y[[m+1]]],{m,1,Length[y]-1}];
    Select[Range[0,100],!whkQ[stc[#]]&&!whkQ[-stc[#]]&]

A348610 Number of alternating ordered factorizations of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 1, 3, 1, 3, 1, 6, 1, 3, 3, 4, 1, 6, 1, 6, 3, 3, 1, 12, 1, 3, 3, 6, 1, 11, 1, 7, 3, 3, 3, 15, 1, 3, 3, 12, 1, 11, 1, 6, 6, 3, 1, 23, 1, 6, 3, 6, 1, 12, 3, 12, 3, 3, 1, 28, 1, 3, 6, 12, 3, 11, 1, 6, 3, 11, 1, 33, 1, 3, 6, 6, 3, 11, 1, 23, 4, 3
Offset: 1

Views

Author

Gus Wiseman, Nov 05 2021

Keywords

Comments

An ordered factorization of n is a finite sequence of positive integers > 1 with product n.
A sequence is alternating if it is alternately strictly increasing and strictly decreasing, starting with either. For example, the partition (3,2,2,2,1) has no alternating permutations, even though it does have the anti-run permutations (2,3,2,1,2) and (2,1,2,3,2).

Examples

			The alternating ordered factorizations of n = 1, 6, 12, 16, 24, 30, 32, 36:
  ()   6     12      16      24      30      32      36
       2*3   2*6     2*8     3*8     5*6     4*8     4*9
       3*2   3*4     8*2     4*6     6*5     8*4     9*4
             4*3     2*4*2   6*4     10*3    16*2    12*3
             6*2             8*3     15*2    2*16    18*2
             2*3*2           12*2    2*15    2*8*2   2*18
                             2*12    3*10    4*2*4   3*12
                             2*4*3   2*5*3           2*6*3
                             2*6*2   3*2*5           2*9*2
                             3*2*4   3*5*2           3*2*6
                             3*4*2   5*2*3           3*4*3
                             4*2*3                   3*6*2
                                                     6*2*3
                                                     2*3*2*3
                                                     3*2*3*2
		

Crossrefs

The additive version (compositions) is A025047 ranked by A345167.
The complementary additive version is A345192, ranked by A345168.
Dominated by A348611 (the anti-run version) at positions A122181.
The complement is counted by A348613.
A001055 counts factorizations, strict A045778, ordered A074206.
A001250 counts alternating permutations, complement A348615.
A339846 counts even-length factorizations.
A339890 counts odd-length factorizations.
A345165 counts partitions w/o an alternating permutation, ranked by A345171.
A345170 counts partitions w/ an alternating permutation, ranked by A345172.
A347463 counts ordered factorizations with integer alternating product.
A348379 counts factorizations w/ an alternating permutation.
A348380 counts factorizations w/o an alternating permutation.

Programs

  • Mathematica
    ordfacs[n_]:=If[n<=1,{{}},Join@@Table[Prepend[#,d]&/@ordfacs[n/d],{d,Rest[Divisors[n]]}]];
    wigQ[y_]:=Or[Length[y]==0,Length[Split[y]] == Length[y]&&Length[Split[Sign[Differences[y]]]]==Length[y]-1];
    Table[Length[Select[ordfacs[n],wigQ]],{n,100}]

A345166 Number of separable integer partitions of n without an alternating permutation.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 2, 3, 5, 6, 7, 10, 14, 18, 21, 27, 35, 42, 54, 65, 78, 95, 117, 140, 170, 202, 239, 286, 343, 401, 476, 562, 660, 775, 910, 1056, 1241, 1444, 1678, 1948, 2267, 2615, 3031, 3502, 4036, 4647, 5356, 6143, 7068, 8101, 9274, 10613, 12151, 13856
Offset: 0

Views

Author

Gus Wiseman, Jun 13 2021

Keywords

Comments

A partition is separable if it has an anti-run permutation (no adjacent parts equal).
A sequence is alternating if it is alternately strictly increasing and strictly decreasing, starting with either. For example, the partition (3,2,2,2,1) has no alternating permutations, even though it has the anti-run permutations (2,3,2,1,2) and (2,1,2,3,2).
The partitions counted by this sequence are those with 2m-1 parts with m being the multiplicity of a part which is neither the smallest or largest part. For example, 4322221 is such a partition since the multiplicity of 2 is 4, the total number of parts is 7, and 2 is neither the smallest or largest part. - Andrew Howroyd, Jan 15 2024

Examples

			The a(10) = 1 through a(16) = 6 partitions:
    32221  42221  52221  62221    43331    43332    53332
                         3222211  72221    53331    63331
                                  4222211  82221    92221
                                           3322221  4322221
                                           5222211  6222211
                                                    322222111
		

Crossrefs

Allowing alternating permutations gives A325534, ranked by A335433.
Not requiring separability gives A345165, ranked by A345171.
Permutations of this type are ranked by A345169.
The Heinz numbers of these partitions are A345173.
Numbers with a factorization of this type are A348609.
A000041 counts integer partitions.
A001250 counts alternating permutations, complement A348615.
A003242 counts anti-run compositions.
A005649 counts anti-run patterns.
A025047 counts alternating or wiggly compositions, also A025048, A025049.
A325535 counts inseparable partitions, ranked by A335448.
A344654 counts non-twin partitions w/o alt permutation, rank A344653.
A345162 counts normal partitions w/o alt permutation, complement A345163.
A345170 counts partitions w/ alt permutation, ranked by A345172.

Programs

  • Mathematica
    wigQ[y_]:=Or[Length[y]==0,Length[Split[y]]== Length[y]&&Length[Split[Sign[Differences[y]]]]==Length[y]-1];
    Table[Length[Select[IntegerPartitions[n],Select[Permutations[#],!MatchQ[#,{_,x_,x_,_}]&]!={}&&Select[Permutations[#],wigQ]=={}&]],{n,0,15}]

Formula

The Heinz numbers of these partitions are A345173 = A345171 /\ A335433.
a(n) = A325534(n) - A345170(n). - Andrew Howroyd, Jan 15 2024

Extensions

a(26) onwards from Andrew Howroyd, Jan 15 2024

A348613 Number of non-alternating ordered factorizations of n.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 2, 0, 0, 0, 4, 0, 2, 0, 2, 0, 0, 0, 8, 1, 0, 1, 2, 0, 2, 0, 9, 0, 0, 0, 11, 0, 0, 0, 8, 0, 2, 0, 2, 2, 0, 0, 25, 1, 2, 0, 2, 0, 8, 0, 8, 0, 0, 0, 16, 0, 0, 2, 20, 0, 2, 0, 2, 0, 2, 0, 43, 0, 0, 2, 2, 0, 2, 0, 25, 4, 0, 0, 16, 0
Offset: 1

Views

Author

Gus Wiseman, Nov 03 2021

Keywords

Comments

An ordered factorization of n is a finite sequence of positive integers > 1 with product n.
A sequence is alternating if it is alternately strictly increasing and strictly decreasing, starting with either.

Examples

			The a(n) ordered factorizations for n = 4, 12, 16, 24, 32, 36:
  2*2   2*2*3   4*4       2*2*6     2*2*8       6*6
        3*2*2   2*2*4     2*3*4     2*4*4       2*2*9
                4*2*2     4*3*2     4*4*2       2*3*6
                2*2*2*2   6*2*2     8*2*2       3*3*4
                          2*2*2*3   2*2*2*4     4*3*3
                          2*2*3*2   2*2*4*2     6*3*2
                          2*3*2*2   2*4*2*2     9*2*2
                          3*2*2*2   4*2*2*2     2*2*3*3
                                    2*2*2*2*2   2*3*3*2
                                                3*2*2*3
                                                3*3*2*2
		

Crossrefs

The complementary additive version is A025047, ranked by A345167.
The additive version is A345192, ranked by A345168, without twins A348377.
The complement is counted by A348610.
A001055 counts factorizations, strict A045778, ordered A074206.
A001250 counts alternating permutations.
A339846 counts even-length factorizations.
A339890 counts odd-length factorizations.
A345165 counts partitions without an alternating permutation, ranked by A345171.
A345170 counts partitions with an alternating permutation, ranked by A345172.
A348379 counts factorizations w/ an alternating permutation, with twins A347050.
A348380 counts factorizations w/o an alternating permutation, w/o twins A347706.
A348611 counts anti-run ordered factorizations.

Programs

  • Mathematica
    ordfacs[n_]:=If[n<=1,{{}},Join@@Table[Prepend[#,d]&/@ordfacs[n/d],{d,Rest[Divisors[n]]}]];
    wigQ[y_]:=Or[Length[y]==0,Length[Split[y]]==Length[y]&&Length[Split[Sign[Differences[y]]]]==Length[y]-1];
    Table[Length[Select[ordfacs[n],!wigQ[#]&]],{n,100}]

A344742 Numbers whose prime factors have a permutation with no consecutive monotone triple, i.e., no triple (..., x, y, z, ...) such that either x <= y <= z or x >= y >= z.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 55, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77
Offset: 1

Views

Author

Gus Wiseman, Jun 12 2021

Keywords

Comments

Differs from A335433 in having all squares of primes (A001248) and lacking 270 etc.
Also Heinz numbers of integer partitions that are either a twin (x,x) or have a wiggly permutation.
(1) The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
(2) A sequence is wiggly if it is alternately strictly increasing and strictly decreasing, starting with either. For example, the partition (3,2,2,2,1) has no wiggly permutations, even though it has anti-run permutations (2,3,2,1,2) and (2,1,2,3,2).

Examples

			The sequence of terms together with their prime indices begins:
      1: {}          18: {1,2,2}     36: {1,1,2,2}
      2: {1}         19: {8}         37: {12}
      3: {2}         20: {1,1,3}     38: {1,8}
      4: {1,1}       21: {2,4}       39: {2,6}
      5: {3}         22: {1,5}       41: {13}
      6: {1,2}       23: {9}         42: {1,2,4}
      7: {4}         25: {3,3}       43: {14}
      9: {2,2}       26: {1,6}       44: {1,1,5}
     10: {1,3}       28: {1,1,4}     45: {2,2,3}
     11: {5}         29: {10}        46: {1,9}
     12: {1,1,2}     30: {1,2,3}     47: {15}
     13: {6}         31: {11}        49: {4,4}
     14: {1,4}       33: {2,5}       50: {1,3,3}
     15: {2,3}       34: {1,7}       51: {2,7}
     17: {7}         35: {3,4}       52: {1,1,6}
For example, the prime factors of 120 are (2,2,2,3,5), with the two wiggly permutations (2,3,2,5,2) and (2,5,2,3,2), so 120 is in the sequence.
		

Crossrefs

Positions of nonzero terms in A344606.
The complement is A344653, counted by A344654.
These partitions are counted by A344740.
A000041 counts partitions of 2n with alternating sum 0, ranked by A000290.
A001248 lists squares of primes.
A001250 counts wiggly permutations.
A003242 counts anti-run compositions.
A011782 counts compositions.
A025047 counts wiggly compositions (ascend: A025048, descend: A025049).
A056239 adds up prime indices, row sums of A112798.
A325534 counts separable partitions, ranked by A335433.
A325535 counts inseparable partitions, ranked by A335448.
A344604 counts wiggly compositions with twins.
A345164 counts wiggly permutations of prime indices.
A345165 counts partitions without a wiggly permutation, ranked by A345171.
A345170 counts partitions with a wiggly permutation, ranked by A345172.
A345192 counts non-wiggly compositions.

Programs

  • Mathematica
    Select[Range[100],Select[Permutations[Flatten[ConstantArray@@@FactorInteger[#]]],!MatchQ[#,{_,x_,y_,z_,_}/;x<=y<=z||x>=y>=z]&]!={}&]

Formula

Union of A345172 (wiggly) and A001248 (squares of primes).

A345173 Numbers whose multiset of prime factors is separable but has no alternating permutation.

Original entry on oeis.org

270, 378, 594, 702, 918, 1026, 1242, 1566, 1620, 1674, 1750, 1998, 2214, 2268, 2322, 2538, 2625, 2750, 2862, 3186, 3250, 3294, 3564, 3618, 3834, 3942, 4050, 4125, 4212, 4250, 4266, 4482, 4750, 4806, 4875, 5238, 5454, 5508, 5562, 5670, 5750, 5778, 5886, 6102
Offset: 1

Views

Author

Gus Wiseman, Jun 13 2021

Keywords

Comments

A multiset is separable if it has an anti-run permutation (no adjacent parts equal).
A sequence is alternating if it is alternately strictly increasing and strictly decreasing, starting with either. For example, the partition (3,2,2,2,1) has no alternating permutations, even though it has the anti-run permutations (2,3,2,1,2) and (2,1,2,3,2).
The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.

Examples

			The terms together with their prime indices begin:
   270: {1,2,2,2,3}
   378: {1,2,2,2,4}
   594: {1,2,2,2,5}
   702: {1,2,2,2,6}
   918: {1,2,2,2,7}
  1026: {1,2,2,2,8}
  1242: {1,2,2,2,9}
  1566: {1,2,2,2,10}
  1620: {1,1,2,2,2,2,3}
  1674: {1,2,2,2,11}
  1750: {1,3,3,3,4}
  1998: {1,2,2,2,12}
  2214: {1,2,2,2,13}
  2268: {1,1,2,2,2,2,4}
  2322: {1,2,2,2,14}
		

Crossrefs

The partitions with these Heinz numbers are counted by A345166.
Permutations of this type are ranked by A345169.
Numbers with a factorization of this type are counted by A348609.
A000041 counts integer partitions.
A001250 counts alternating permutations, complement A348615.
A003242 counts anti-run compositions.
A025047 counts alternating compositions, ascend A025048, descend A025049.
A325534 counts separable partitions, ranked by A335433.
A325535 counts inseparable partitions, ranked by A335448.
A344606 counts alternating permutations of prime indices with twins.
A344740 counts twins and partitions with an alternating permutation.
A345164 counts alternating permutations of prime factors.
A345165 counts partitions without an alternating permutation.
A345170 counts partitions with an alternating permutation.
A345192 counts non-alternating compositions, without twins A348377.
A348379 counts factorizations with an alternating permutation.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    wigQ[y_]:=Or[Length[y]==0,Length[Split[y]]== Length[y]&&Length[Split[Sign[Differences[y]]]]==Length[y]-1];
    sepQ[y_]:=!MatchQ[y,{_,x_,x_,_}];
    Select[Range[1000],Select[Permutations[primeMS[#]],wigQ]=={}&&!Select[Permutations[primeMS[#]],sepQ]=={}&]

Formula

Equals A345171 /\ A335433.

A345169 Numbers k such that the k-th composition in standard order is a non-alternating anti-run.

Original entry on oeis.org

37, 52, 69, 101, 104, 105, 133, 137, 150, 165, 180, 197, 200, 208, 209, 210, 261, 265, 274, 278, 300, 301, 308, 325, 328, 357, 360, 361, 389, 393, 400, 401, 406, 416, 417, 418, 421, 422, 436, 517, 521, 529, 530, 534, 549, 550, 556, 557, 564, 581, 600, 601, 613
Offset: 1

Views

Author

Gus Wiseman, Jun 15 2021

Keywords

Comments

The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.
A sequence is alternating if it is alternately strictly increasing and strictly decreasing, starting with either. For example, the partition (3,2,2,2,1) has no alternating permutations, even though it does have the anti-run permutations (2,3,2,1,2) and (2,1,2,3,2).
An anti-run (separation or Carlitz composition) is a sequence with no adjacent equal parts.

Examples

			The sequence of terms together with their binary indices begins:
     37: (3,2,1)      210: (1,2,3,2)      400: (1,3,5)
     52: (1,2,3)      261: (6,2,1)        401: (1,3,4,1)
     69: (4,2,1)      265: (5,3,1)        406: (1,3,2,1,2)
    101: (1,3,2,1)    274: (4,3,2)        416: (1,2,6)
    104: (1,2,4)      278: (4,2,1,2)      417: (1,2,5,1)
    105: (1,2,3,1)    300: (3,2,1,3)      418: (1,2,4,2)
    133: (5,2,1)      301: (3,2,1,2,1)    421: (1,2,3,2,1)
    137: (4,3,1)      308: (3,1,2,3)      422: (1,2,3,1,2)
    150: (3,2,1,2)    325: (2,4,2,1)      436: (1,2,1,2,3)
    165: (2,3,2,1)    328: (2,3,4)        517: (7,2,1)
    180: (2,1,2,3)    357: (2,1,3,2,1)    521: (6,3,1)
    197: (1,4,2,1)    360: (2,1,2,4)      529: (5,4,1)
    200: (1,3,4)      361: (2,1,2,3,1)    530: (5,3,2)
    208: (1,2,5)      389: (1,5,2,1)      534: (5,2,1,2)
    209: (1,2,4,1)    393: (1,4,3,1)      549: (4,3,2,1)
		

Crossrefs

A version counting partitions is A345166, ranked by A345173.
These compositions are counted by A345195.
A001250 counts alternating permutations, complement A348615.
A003242 counts anti-run compositions.
A005649 counts anti-run patterns.
A025047 counts alternating or wiggly compositions, also A025048, A025049.
A325534 counts separable partitions, ranked by A335433.
A325535 counts inseparable partitions, ranked by A335448.
A345164 counts alternating permutations of prime indices.
A345165 counts partitions w/o an alternating permutation, ranked by A345171.
A345170 counts partitions w/ an alternating permutation, ranked by A345172.
A345192 counts non-alternating compositions.
A345194 counts alternating patterns (with twins: A344605).
Statistics of standard compositions:
- Length is A000120.
- Constant runs are A124767.
- Heinz number is A333219.
- Anti-runs are A333381.
- Runs-resistance is A333628.
- Number of distinct parts is A334028.
- Non-anti-runs are A348612.
Classes of standard compositions:
- Weakly decreasing compositions (partitions) are A114994.
- Weakly increasing compositions (multisets) are A225620.
- Strict compositions are A233564.
- Constant compositions are A272919.
- Strictly increasing compositions (sets) are A333255.
- Strictly decreasing compositions (strict partitions) are A333256.
- Anti-runs are A333489.
- Alternating compositions are A345167.
- Non-Alternating compositions are A345168.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[ Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    wigQ[y_]:=Or[Length[y]==0,Length[Split[y]]== Length[y]&&Length[Split[Sign[Differences[y]]]]==Length[y]-1];
    sepQ[y_]:=!MatchQ[y,{_,x_,x_,_}];
    Select[Range[0,1000],sepQ[stc[#]]&&!wigQ[stc[#]]&]

Formula

Intersection of A345168 (non-alternating) and A333489 (anti-run).
Previous Showing 11-20 of 34 results. Next