cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A094574 Number of (<=2)-covers of an n-set.

Original entry on oeis.org

1, 1, 5, 40, 457, 6995, 136771, 3299218, 95668354, 3268445951, 129468914524, 5868774803537, 301122189141524, 17327463910351045, 1109375488487304027, 78484513540137938209, 6098627708074641312182, 517736625823888411991202, 47791900951140948275632148
Offset: 0

Views

Author

Goran Kilibarda, Vladeta Jovovic, May 12 2004

Keywords

Comments

Also the number of strict multiset partitions of {1, 1, 2, 2, 3, 3, ..., n, n}. For example, the a(2) = 5 strict multiset partitions of {1, 1, 2, 2} are (1122), (1)(122), (2)(112), (11)(22), (1)(2)(12). - Gus Wiseman, Jul 18 2018

Examples

			From _Gus Wiseman_, Sep 02 2019: (Start)
These are set-systems covering {1..n} with vertex-degrees <= 2. For example, the a(3) = 40 covers are:
  {123}  {1}{23}    {1}{2}{3}     {1}{2}{3}{12}
         {2}{13}    {1}{2}{13}    {1}{2}{3}{13}
         {3}{12}    {1}{2}{23}    {1}{2}{3}{23}
         {1}{123}   {1}{3}{12}    {1}{2}{13}{23}
         {12}{13}   {1}{3}{23}    {1}{2}{3}{123}
         {12}{23}   {2}{3}{12}    {1}{3}{12}{23}
         {13}{23}   {2}{3}{13}    {2}{3}{12}{13}
         {2}{123}   {1}{12}{23}
         {3}{123}   {1}{13}{23}
         {12}{123}  {1}{2}{123}
         {13}{123}  {1}{3}{123}
         {23}{123}  {2}{12}{13}
                    {2}{13}{23}
                    {2}{3}{123}
                    {3}{12}{13}
                    {3}{12}{23}
                    {12}{13}{23}
                    {1}{23}{123}
                    {2}{13}{123}
                    {3}{12}{123}
(End)
		

Crossrefs

Row n=2 of A219585. - Alois P. Heinz, Nov 23 2012
Dominated by A003465.
Graphs with vertex-degrees <= 2 are A136281.
Main diagonal of A346517.

Programs

  • Mathematica
    facs[n_]:=facs[n]=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Length[Select[facs[Array[Prime,n,1,Times]^2],UnsameQ@@#&]],{n,0,6}] (* Gus Wiseman, Jul 18 2018 *)
    m = 20;
    a094577[n_] := Sum[Binomial[n, k]*BellB[2 n - k], {k, 0, n}];
    egf = Exp[(1 - Exp[x])/2]*Sum[a094577[n]*(x/2)^n/n!, {n, 0, m}] + O[x]^m;
    CoefficientList[egf + O[x]^m, x]*Range[0, m-1]! (* Jean-François Alcover, May 13 2019 *)

Formula

Row sums of A094573.
E.g.f: exp(-1-1/2*(exp(x)-1))*Sum(exp(x*binomial(n+1, 2))/n!, n=0..infinity) or exp((1-exp(x))/2)*Sum(A094577 (n)*(x/2)^n/n!, n=0..infinity).

A346500 Number A(n,k) of partitions of the (n+k)-multiset {1,2,...,n,1,2,...,k}; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 2, 2, 2, 5, 4, 4, 5, 15, 11, 9, 11, 15, 52, 36, 26, 26, 36, 52, 203, 135, 92, 66, 92, 135, 203, 877, 566, 371, 249, 249, 371, 566, 877, 4140, 2610, 1663, 1075, 712, 1075, 1663, 2610, 4140, 21147, 13082, 8155, 5133, 3274, 3274, 5133, 8155, 13082, 21147
Offset: 0

Views

Author

Alois P. Heinz, Jul 20 2021

Keywords

Comments

Also number A(n,k) of factorizations of Product_{i=1..n} prime(i) * Product_{i=1..k} prime(i); A(2,2) = 9: 2*2*3*3, 3*3*4, 6*6, 2*3*6, 4*9, 2*2*9, 3*12, 2*18, 36.

Examples

			A(2,2) = 9: 1122, 11|22, 12|12, 1|122, 112|2, 11|2|2, 1|1|22, 1|12|2, 1|1|2|2.
Square array A(n,k) begins:
    1,    1,    2,     5,    15,     52,     203,     877, ...
    1,    2,    4,    11,    36,    135,     566,    2610, ...
    2,    4,    9,    26,    92,    371,    1663,    8155, ...
    5,   11,   26,    66,   249,   1075,    5133,   26683, ...
   15,   36,   92,   249,   712,   3274,   16601,   91226, ...
   52,  135,  371,  1075,  3274,  10457,   56135,  325269, ...
  203,  566, 1663,  5133, 16601,  56135,  198091, 1207433, ...
  877, 2610, 8155, 26683, 91226, 325269, 1207433, 4659138, ...
  ...
		

Crossrefs

Columns (or rows) k=0-10 give: A000110, A035098, A322764, A322768, A346881, A346882, A346883, A346884, A346885, A346886, A346887.
Main diagonal gives A020555.
First upper (or lower) diagonal gives A322766.
Second upper (or lower) diagonal gives A322767.
Antidiagonal sums give A346490.
A(2n,n) gives A322769.

Programs

  • Maple
    g:= proc(n, k) option remember; uses numtheory; `if`(n>k, 0, 1)+
         `if`(isprime(n), 0, add(`if`(d>k or max(factorset(n/d))>d, 0,
            g(n/d, d)), d=divisors(n) minus {1, n}))
        end:
    p:= proc(n) option remember; `if`(n=0, 1, p(n-1)*ithprime(n)) end:
    A:= (n, k)-> g(p(n)*p(k)$2):
    seq(seq(A(n, d-n), n=0..d), d=0..10);
    # second Maple program:
    b:= proc(n) option remember; `if`(n=0, 1,
          add(b(n-j)*binomial(n-1, j-1), j=1..n))
        end:
    A:= proc(n, k) option remember; `if`(n
    				
  • Mathematica
    b[n_] := b[n] = If[n == 0, 1, Sum[b[n-j] Binomial[n-1, j-1], {j, 1, n}]];
    A[n_, k_] := A[n, k] = If[n < k, A[k, n],
         If[k == 0, b[n], (A[n + 1, k - 1] + Sum[A[n - k + j, j]*
         Binomial[k - 1, j], {j, 0, k - 1}] + A[n, k - 1])/2]];
    Table[Table[A[n, d - n], {n, 0, d}], {d, 0, 10}] // Flatten (* Jean-François Alcover, Aug 18 2021, after Alois P. Heinz's second program *)

Formula

A(n,k) = A001055(A002110(n)*A002110(k)).
A(n,k) = A(k,n).
A(n,k) = A322765(abs(n-k),min(n,k)).

A322773 Column 2 of array in A322770.

Original entry on oeis.org

5, 18, 70, 299, 1393, 7023, 38043, 220054, 1352082, 8784991, 60125371, 432001747, 3248914361, 25508188118, 208592396802, 1772921926183, 15632838989393, 142759592985079, 1348095912827295, 13145321614286610, 132188675368994446, 1369216940917868547
Offset: 0

Views

Author

N. J. A. Sloane, Dec 30 2018

Keywords

Crossrefs

Column k=2 of A346517.

A322774 Column 3 of array in A322770.

Original entry on oeis.org

40, 172, 801, 4025, 21709, 124997, 764538, 4945866, 33710579, 241273791, 1807949285, 14146621349, 115316563400, 977216138500, 8592652709041, 78263082518169, 737228862573509, 7172071557558805, 71964172085006666, 743866850349092130, 7912230538914051723
Offset: 0

Views

Author

N. J. A. Sloane, Dec 30 2018

Keywords

Crossrefs

Column k=3 of A346517.

A322771 Row 1 of array in A322770.

Original entry on oeis.org

1, 3, 18, 172, 2295, 40043, 875936, 23308546, 737478487, 27252363585, 1159335917625, 56103737161197, 3057787510932485, 186102920689311261, 12555513437042340449, 932964243520888524391, 75926403820972271325522, 6733532223196893844825456, 647846856775383975668238328, 67349524752043243630964385000
Offset: 0

Views

Author

N. J. A. Sloane, Dec 30 2018

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember; `if`(n=0, 1,
          add(b(n-j)*binomial(n-1, j-1), j=1..n))
        end:
    A:= proc(n, k) option remember; `if`(n A(n, n+1):
    seq(a(n), n=0..19);  # Alois P. Heinz, Jul 21 2021
  • Mathematica
    Q[m_, n_] := Q[m, n] = If[n == 0, BellB[m], (1/2)(Q[m+2, n-1] + Q[m+1, n-1] - Sum[Binomial[n-1, k] Q[m, k], {k, 0, n-1}])];
    a[n_] := Q[1, n];
    Table[a[n], {n, 0, 19}] (* Jean-François Alcover, Apr 29 2022 *)

Formula

a(n) = A346517(n,n+1) = A346517(n+1,n). - Alois P. Heinz, Jul 21 2021

A322772 Row 2 of array in A322770.

Original entry on oeis.org

2, 9, 70, 801, 12347, 243235, 5908978, 172449180, 5925731200, 235946129714, 10745098631229, 553630279110396, 31978001903989065, 2054387367168242251, 145795148420558536232, 11361381129471379493270, 967044630942570464100761, 89483154423059719127570924, 8963545185499520505954151682
Offset: 0

Views

Author

N. J. A. Sloane, Dec 30 2018

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember; `if`(n=0, 1,
          add(b(n-j)*binomial(n-1, j-1), j=1..n))
        end:
    A:= proc(n, k) option remember; `if`(n A(n, n+2):
    seq(a(n), n=0..18);  # Alois P. Heinz, Jul 21 2021
  • Mathematica
    Q[m_, n_] := Q[m, n] = If[n == 0, BellB[m], (1/2)(Q[m+2, n-1] + Q[m+1, n-1] - Sum[Binomial[n-1, k] Q[m, k], {k, 0, n-1}])];
    a[n_] := Q[2, n];
    Table[a[n], {n, 0, 18}] (* Jean-François Alcover, Apr 29 2022 *)

Formula

a(n) = A346517(n,n+2) = A346517(n+2,n). - Alois P. Heinz, Jul 21 2021

A346518 Total number of partitions of all n-multisets {1,2,...,n-j,1,2,...,j} into distinct multisets for 0 <= j <= n.

Original entry on oeis.org

1, 2, 5, 16, 53, 202, 826, 3724, 17939, 93390, 516125, 3042412, 18923139, 124368810, 857827458, 6208594458, 46937360868, 370335617694, 3039823038753, 25928519847988, 229285625745624, 2099543718917418, 19872430464012935, 194203934113959970, 1956736801957704866
Offset: 0

Views

Author

Alois P. Heinz, Jul 21 2021

Keywords

Comments

Also total number of factorizations of Product_{i=1..n-j} prime(i) * Product_{i=1..j} prime(i) into distinct factors for 0 <= j <= n.

Crossrefs

Antidiagonal sums of A346517.

Programs

  • Maple
    b:= proc(n) option remember; `if`(n=0, 1,
          add(b(n-j)*binomial(n-1, j-1), j=1..n))
        end:
    A:= proc(n, k) option remember; `if`(n add(A(n-j, j), j=0..n):
    seq(a(n), n=0..24);
  • Mathematica
    (* Q is A322770 *)
    Q[m_, n_] := Q[m, n] = If[n == 0, BellB[m], (1/2) (Q[m + 2, n - 1] +
         Q[m + 1, n - 1] - Sum[Binomial[n - 1, k] Q[m, k], {k, 0, n - 1}])];
    A[n_, k_] := Q[Abs[n - k], Min[n, k]];
    a[n_] := Sum[A[n - j, j], {j, 0, n}];
    Table[a[n], {n, 0, 24}] (* Jean-François Alcover, Apr 06 2022 *)

Formula

a(n) = Sum_{j=0..n} A045778(A002110(n-j)*A002110(j)).
a(n) = Sum_{j=0..n} A346517(n-j,j).

A346897 Number of partitions of the (n+4)-multiset {1,2,...,n,1,2,3,4} into distinct multisets.

Original entry on oeis.org

15, 31, 70, 172, 457, 2295, 12347, 70843, 431636, 2781372, 18885177, 134670425, 1005626319, 7842880313, 63733789544, 538521313772, 4722239916109, 42899823779887, 403127907995427, 3912789622898471, 39175487045290456, 404110470650751416, 4290001467563698869
Offset: 0

Views

Author

Alois P. Heinz, Aug 06 2021

Keywords

Comments

Also number of factorizations of Product_{i=1..n} prime(i) * Product_{i=1..4} prime(i) into distinct factors.

Crossrefs

Column (or row) k=4 of A346517.
Cf. A346881.

A346898 Number of partitions of the (n+5)-multiset {1,2,...,n,1,2,...,5} into distinct multisets.

Original entry on oeis.org

52, 120, 299, 801, 2295, 6995, 40043, 243235, 1562071, 10569612, 75114998, 559057663, 4346341361, 35213909313, 296696424975, 2594712611306, 23512150424424, 220412149622759, 2134476336680003, 21324751529837231, 219524646452224135, 2325946109640859828
Offset: 0

Views

Author

Alois P. Heinz, Aug 06 2021

Keywords

Comments

Also number of factorizations of Product_{i=1..n} prime(i) * Product_{i=1..5} prime(i) into distinct factors.

Crossrefs

Column (or row) k=5 of A346517.
Cf. A346882.

A346899 Number of partitions of the (n+6)-multiset {1,2,...,n,1,2,...,6} into distinct multisets.

Original entry on oeis.org

203, 514, 1393, 4025, 12347, 40043, 136771, 875936, 5908978, 41862462, 310606617, 2407527172, 19449364539, 163419459850, 1425408016084, 12884224833364, 120496112842571, 1164268932225644, 11607009161248659, 119245195695018868, 1261021161600404210
Offset: 0

Views

Author

Alois P. Heinz, Aug 06 2021

Keywords

Comments

Also number of factorizations of Product_{i=1..n} prime(i) * Product_{i=1..6} prime(i) into distinct factors.

Crossrefs

Column (or row) k=6 of A346517.
Cf. A346883.
Showing 1-10 of 14 results. Next