A094574
Number of (<=2)-covers of an n-set.
Original entry on oeis.org
1, 1, 5, 40, 457, 6995, 136771, 3299218, 95668354, 3268445951, 129468914524, 5868774803537, 301122189141524, 17327463910351045, 1109375488487304027, 78484513540137938209, 6098627708074641312182, 517736625823888411991202, 47791900951140948275632148
Offset: 0
From _Gus Wiseman_, Sep 02 2019: (Start)
These are set-systems covering {1..n} with vertex-degrees <= 2. For example, the a(3) = 40 covers are:
{123} {1}{23} {1}{2}{3} {1}{2}{3}{12}
{2}{13} {1}{2}{13} {1}{2}{3}{13}
{3}{12} {1}{2}{23} {1}{2}{3}{23}
{1}{123} {1}{3}{12} {1}{2}{13}{23}
{12}{13} {1}{3}{23} {1}{2}{3}{123}
{12}{23} {2}{3}{12} {1}{3}{12}{23}
{13}{23} {2}{3}{13} {2}{3}{12}{13}
{2}{123} {1}{12}{23}
{3}{123} {1}{13}{23}
{12}{123} {1}{2}{123}
{13}{123} {1}{3}{123}
{23}{123} {2}{12}{13}
{2}{13}{23}
{2}{3}{123}
{3}{12}{13}
{3}{12}{23}
{12}{13}{23}
{1}{23}{123}
{2}{13}{123}
{3}{12}{123}
(End)
Graphs with vertex-degrees <= 2 are
A136281.
Cf.
A002718,
A007716,
A020554,
A020555,
A050535,
A094574,
A136284,
A316974,
A327104,
A327106,
A327229.
-
facs[n_]:=facs[n]=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
Table[Length[Select[facs[Array[Prime,n,1,Times]^2],UnsameQ@@#&]],{n,0,6}] (* Gus Wiseman, Jul 18 2018 *)
m = 20;
a094577[n_] := Sum[Binomial[n, k]*BellB[2 n - k], {k, 0, n}];
egf = Exp[(1 - Exp[x])/2]*Sum[a094577[n]*(x/2)^n/n!, {n, 0, m}] + O[x]^m;
CoefficientList[egf + O[x]^m, x]*Range[0, m-1]! (* Jean-François Alcover, May 13 2019 *)
A346500
Number A(n,k) of partitions of the (n+k)-multiset {1,2,...,n,1,2,...,k}; square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
1, 1, 1, 2, 2, 2, 5, 4, 4, 5, 15, 11, 9, 11, 15, 52, 36, 26, 26, 36, 52, 203, 135, 92, 66, 92, 135, 203, 877, 566, 371, 249, 249, 371, 566, 877, 4140, 2610, 1663, 1075, 712, 1075, 1663, 2610, 4140, 21147, 13082, 8155, 5133, 3274, 3274, 5133, 8155, 13082, 21147
Offset: 0
A(2,2) = 9: 1122, 11|22, 12|12, 1|122, 112|2, 11|2|2, 1|1|22, 1|12|2, 1|1|2|2.
Square array A(n,k) begins:
1, 1, 2, 5, 15, 52, 203, 877, ...
1, 2, 4, 11, 36, 135, 566, 2610, ...
2, 4, 9, 26, 92, 371, 1663, 8155, ...
5, 11, 26, 66, 249, 1075, 5133, 26683, ...
15, 36, 92, 249, 712, 3274, 16601, 91226, ...
52, 135, 371, 1075, 3274, 10457, 56135, 325269, ...
203, 566, 1663, 5133, 16601, 56135, 198091, 1207433, ...
877, 2610, 8155, 26683, 91226, 325269, 1207433, 4659138, ...
...
Columns (or rows) k=0-10 give:
A000110,
A035098,
A322764,
A322768,
A346881,
A346882,
A346883,
A346884,
A346885,
A346886,
A346887.
First upper (or lower) diagonal gives
A322766.
Second upper (or lower) diagonal gives
A322767.
-
g:= proc(n, k) option remember; uses numtheory; `if`(n>k, 0, 1)+
`if`(isprime(n), 0, add(`if`(d>k or max(factorset(n/d))>d, 0,
g(n/d, d)), d=divisors(n) minus {1, n}))
end:
p:= proc(n) option remember; `if`(n=0, 1, p(n-1)*ithprime(n)) end:
A:= (n, k)-> g(p(n)*p(k)$2):
seq(seq(A(n, d-n), n=0..d), d=0..10);
# second Maple program:
b:= proc(n) option remember; `if`(n=0, 1,
add(b(n-j)*binomial(n-1, j-1), j=1..n))
end:
A:= proc(n, k) option remember; `if`(n
-
b[n_] := b[n] = If[n == 0, 1, Sum[b[n-j] Binomial[n-1, j-1], {j, 1, n}]];
A[n_, k_] := A[n, k] = If[n < k, A[k, n],
If[k == 0, b[n], (A[n + 1, k - 1] + Sum[A[n - k + j, j]*
Binomial[k - 1, j], {j, 0, k - 1}] + A[n, k - 1])/2]];
Table[Table[A[n, d - n], {n, 0, d}], {d, 0, 10}] // Flatten (* Jean-François Alcover, Aug 18 2021, after Alois P. Heinz's second program *)
Original entry on oeis.org
5, 18, 70, 299, 1393, 7023, 38043, 220054, 1352082, 8784991, 60125371, 432001747, 3248914361, 25508188118, 208592396802, 1772921926183, 15632838989393, 142759592985079, 1348095912827295, 13145321614286610, 132188675368994446, 1369216940917868547
Offset: 0
Original entry on oeis.org
40, 172, 801, 4025, 21709, 124997, 764538, 4945866, 33710579, 241273791, 1807949285, 14146621349, 115316563400, 977216138500, 8592652709041, 78263082518169, 737228862573509, 7172071557558805, 71964172085006666, 743866850349092130, 7912230538914051723
Offset: 0
Original entry on oeis.org
1, 3, 18, 172, 2295, 40043, 875936, 23308546, 737478487, 27252363585, 1159335917625, 56103737161197, 3057787510932485, 186102920689311261, 12555513437042340449, 932964243520888524391, 75926403820972271325522, 6733532223196893844825456, 647846856775383975668238328, 67349524752043243630964385000
Offset: 0
-
b:= proc(n) option remember; `if`(n=0, 1,
add(b(n-j)*binomial(n-1, j-1), j=1..n))
end:
A:= proc(n, k) option remember; `if`(n A(n, n+1):
seq(a(n), n=0..19); # Alois P. Heinz, Jul 21 2021
-
Q[m_, n_] := Q[m, n] = If[n == 0, BellB[m], (1/2)(Q[m+2, n-1] + Q[m+1, n-1] - Sum[Binomial[n-1, k] Q[m, k], {k, 0, n-1}])];
a[n_] := Q[1, n];
Table[a[n], {n, 0, 19}] (* Jean-François Alcover, Apr 29 2022 *)
Original entry on oeis.org
2, 9, 70, 801, 12347, 243235, 5908978, 172449180, 5925731200, 235946129714, 10745098631229, 553630279110396, 31978001903989065, 2054387367168242251, 145795148420558536232, 11361381129471379493270, 967044630942570464100761, 89483154423059719127570924, 8963545185499520505954151682
Offset: 0
-
b:= proc(n) option remember; `if`(n=0, 1,
add(b(n-j)*binomial(n-1, j-1), j=1..n))
end:
A:= proc(n, k) option remember; `if`(n A(n, n+2):
seq(a(n), n=0..18); # Alois P. Heinz, Jul 21 2021
-
Q[m_, n_] := Q[m, n] = If[n == 0, BellB[m], (1/2)(Q[m+2, n-1] + Q[m+1, n-1] - Sum[Binomial[n-1, k] Q[m, k], {k, 0, n-1}])];
a[n_] := Q[2, n];
Table[a[n], {n, 0, 18}] (* Jean-François Alcover, Apr 29 2022 *)
A346518
Total number of partitions of all n-multisets {1,2,...,n-j,1,2,...,j} into distinct multisets for 0 <= j <= n.
Original entry on oeis.org
1, 2, 5, 16, 53, 202, 826, 3724, 17939, 93390, 516125, 3042412, 18923139, 124368810, 857827458, 6208594458, 46937360868, 370335617694, 3039823038753, 25928519847988, 229285625745624, 2099543718917418, 19872430464012935, 194203934113959970, 1956736801957704866
Offset: 0
-
b:= proc(n) option remember; `if`(n=0, 1,
add(b(n-j)*binomial(n-1, j-1), j=1..n))
end:
A:= proc(n, k) option remember; `if`(n add(A(n-j, j), j=0..n):
seq(a(n), n=0..24);
-
(* Q is A322770 *)
Q[m_, n_] := Q[m, n] = If[n == 0, BellB[m], (1/2) (Q[m + 2, n - 1] +
Q[m + 1, n - 1] - Sum[Binomial[n - 1, k] Q[m, k], {k, 0, n - 1}])];
A[n_, k_] := Q[Abs[n - k], Min[n, k]];
a[n_] := Sum[A[n - j, j], {j, 0, n}];
Table[a[n], {n, 0, 24}] (* Jean-François Alcover, Apr 06 2022 *)
A346897
Number of partitions of the (n+4)-multiset {1,2,...,n,1,2,3,4} into distinct multisets.
Original entry on oeis.org
15, 31, 70, 172, 457, 2295, 12347, 70843, 431636, 2781372, 18885177, 134670425, 1005626319, 7842880313, 63733789544, 538521313772, 4722239916109, 42899823779887, 403127907995427, 3912789622898471, 39175487045290456, 404110470650751416, 4290001467563698869
Offset: 0
A346898
Number of partitions of the (n+5)-multiset {1,2,...,n,1,2,...,5} into distinct multisets.
Original entry on oeis.org
52, 120, 299, 801, 2295, 6995, 40043, 243235, 1562071, 10569612, 75114998, 559057663, 4346341361, 35213909313, 296696424975, 2594712611306, 23512150424424, 220412149622759, 2134476336680003, 21324751529837231, 219524646452224135, 2325946109640859828
Offset: 0
A346899
Number of partitions of the (n+6)-multiset {1,2,...,n,1,2,...,6} into distinct multisets.
Original entry on oeis.org
203, 514, 1393, 4025, 12347, 40043, 136771, 875936, 5908978, 41862462, 310606617, 2407527172, 19449364539, 163419459850, 1425408016084, 12884224833364, 120496112842571, 1164268932225644, 11607009161248659, 119245195695018868, 1261021161600404210
Offset: 0
Showing 1-10 of 14 results.
Comments