A378327
a(n) = Sum_{k=0..n} binomial(n,k) * binomial(n*k,k) / ((n-1)*k + 1).
Original entry on oeis.org
1, 2, 5, 25, 257, 4361, 104425, 3241316, 123865313, 5628753361, 296671566941, 17798975341467, 1197924420178381, 89394126594968755, 7326377073291002147, 654215578855903951141, 63225054646397348577601, 6575059243843086616460321, 732138834180570978286488133
Offset: 0
-
Table[Sum[Binomial[n, k] Binomial[n*k, k]/((n-1)*k + 1), {k, 0, n}], {n, 0, 20}]
A349581
G.f. A(x) satisfies: A(x) = 1 / (1 - 2*x) + x * (1 - 2*x)^2 * A(x)^4.
Original entry on oeis.org
1, 3, 12, 66, 460, 3681, 31848, 289176, 2714044, 26103468, 255876048, 2546717454, 25666830724, 261407935366, 2686191839232, 27815564456544, 289960011573212, 3040424427011492, 32046741183678288, 339345854532800136, 3608307717155678256, 38511520730570169033
Offset: 0
-
nmax = 21; A[] = 0; Do[A[x] = 1/(1 - 2 x) + x (1 - 2 x)^2 A[x]^4 + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
Table[Sum[Binomial[n, k] Binomial[4 k, k] 2^(n - k)/(3 k + 1), {k, 0, n}], {n, 0, 21}]
-
a(n) = sum(k=0, n, binomial(n,k)*binomial(4*k,k)*2^(n-k)/(3*k+1)); \\ Michel Marcus, Nov 23 2021
A359643
a(n) = Sum_{k=0..n} binomial(n,k) * binomial(4*k,k).
Original entry on oeis.org
1, 5, 37, 317, 2885, 27105, 259765, 2523813, 24768069, 244941833, 2437083697, 24367722725, 244639635749, 2464477467769, 24899468129405, 252202062544617, 2560119328830725, 26038134699958233, 265278657849511561, 2706809063101138409, 27657194997231516145, 282941098708193905485
Offset: 0
-
A359643 := proc(n)
hypergeom([-n,1/4,1/2,3/4],[1/3,2/3,1],-256/27) ;
simplify(%) ;
end proc:
seq(A359643(n),n=0..40) ; # R. J. Mathar, Jan 10 2023
-
Table[Sum[Binomial[n, k]*Binomial[4*k, k], {k, 0, n}], {n, 0, 20}]
-
a(n) = sum(k=0, n, binomial(n,k) * binomial(4*k,k)); \\ Michel Marcus, Jan 09 2023
A381985
E.g.f. A(x) satisfies A(x) = exp(x) * B(x*A(x)), where B(x) = 1 + x*B(x)^3 is the g.f. of A001764.
Original entry on oeis.org
1, 2, 13, 217, 5937, 223641, 10725433, 625007993, 42883208609, 3386452550689, 302545287708201, 30170153462509545, 3322052185576104049, 400328811249634307249, 52406094009429908677049, 7405663486143907784247481, 1123601498350780798756198209, 182173718779147621454796872769
Offset: 0
A381937
G.f. A(x) satisfies A(x) = (1 + x) * B(x*A(x)), where B(x) is the g.f. of A001764.
Original entry on oeis.org
1, 2, 6, 35, 240, 1805, 14386, 119365, 1020136, 8918423, 79380514, 716911887, 6553219720, 60513355786, 563648995020, 5289485238552, 49963186247220, 474655663418546, 4532279676629700, 43473774550929628, 418706702628897708, 4047555977981218963
Offset: 0
-
a(n) = sum(k=0, n, binomial(4*k+1, k)*binomial(k+1, n-k)/(4*k+1));
Comments