cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A378327 a(n) = Sum_{k=0..n} binomial(n,k) * binomial(n*k,k) / ((n-1)*k + 1).

Original entry on oeis.org

1, 2, 5, 25, 257, 4361, 104425, 3241316, 123865313, 5628753361, 296671566941, 17798975341467, 1197924420178381, 89394126594968755, 7326377073291002147, 654215578855903951141, 63225054646397348577601, 6575059243843086616460321, 732138834180570978286488133
Offset: 0

Views

Author

Vaclav Kotesovec, Nov 23 2024

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[n, k] Binomial[n*k, k]/((n-1)*k + 1), {k, 0, n}], {n, 0, 20}]

Formula

a(n) ~ exp(n + exp(-1) - 1/2) * n^(n - 5/2) / sqrt(2*Pi).

A349581 G.f. A(x) satisfies: A(x) = 1 / (1 - 2*x) + x * (1 - 2*x)^2 * A(x)^4.

Original entry on oeis.org

1, 3, 12, 66, 460, 3681, 31848, 289176, 2714044, 26103468, 255876048, 2546717454, 25666830724, 261407935366, 2686191839232, 27815564456544, 289960011573212, 3040424427011492, 32046741183678288, 339345854532800136, 3608307717155678256, 38511520730570169033
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 22 2021

Keywords

Comments

Second binomial transform of A002293.

Crossrefs

Programs

  • Mathematica
    nmax = 21; A[] = 0; Do[A[x] = 1/(1 - 2 x) + x (1 - 2 x)^2 A[x]^4 + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
    Table[Sum[Binomial[n, k] Binomial[4 k, k] 2^(n - k)/(3 k + 1), {k, 0, n}], {n, 0, 21}]
  • PARI
    a(n) = sum(k=0, n, binomial(n,k)*binomial(4*k,k)*2^(n-k)/(3*k+1)); \\ Michel Marcus, Nov 23 2021

Formula

a(n) = Sum_{k=0..n} binomial(n,k) * binomial(4*k,k) * 2^(n-k) / (3*k+1).
a(n) = 2^n*F([1/4, 1/2, 3/4, -n], [2/3, 1, 4/3], -2^7/3^3), where F is the generalized hypergeometric function. - Stefano Spezia, Nov 22 2021
a(n) ~ 2^(n - 10) * 155^(n + 3/2) / (sqrt(Pi) * n^(3/2) * 3^(3*n + 3/2)). - Vaclav Kotesovec, Nov 26 2021

A359643 a(n) = Sum_{k=0..n} binomial(n,k) * binomial(4*k,k).

Original entry on oeis.org

1, 5, 37, 317, 2885, 27105, 259765, 2523813, 24768069, 244941833, 2437083697, 24367722725, 244639635749, 2464477467769, 24899468129405, 252202062544617, 2560119328830725, 26038134699958233, 265278657849511561, 2706809063101138409, 27657194997231516145, 282941098708193905485
Offset: 0

Views

Author

Vaclav Kotesovec, Jan 09 2023

Keywords

Comments

In general, for m>1, Sum_{k=0..n} binomial(n,k) * binomial(m*k,k) ~ sqrt((m + (1 - 1/m)^(m-1))/(m-1)) * (1 + m^m/(m-1)^(m-1))^n / sqrt(2*Pi*n).

Crossrefs

Programs

  • Maple
    A359643 := proc(n)
        hypergeom([-n,1/4,1/2,3/4],[1/3,2/3,1],-256/27) ;
        simplify(%) ;
    end proc:
    seq(A359643(n),n=0..40) ; # R. J. Mathar, Jan 10 2023
  • Mathematica
    Table[Sum[Binomial[n, k]*Binomial[4*k, k], {k, 0, n}], {n, 0, 20}]
  • PARI
    a(n) = sum(k=0, n, binomial(n,k) * binomial(4*k,k)); \\ Michel Marcus, Jan 09 2023

Formula

a(n) ~ 283^(n + 1/2) / (2^(7/2) * sqrt(Pi*n) * 3^(3*n + 1/2)).
Conjecture D-finite with recurrence +81*n*(3*n-1)*(3*n-2)*a(n) +3*(243*n^3-8433*n^2+14984*n-7064)*a(n-1) +2*(-58607*n^3+297306*n^2-491401*n+269124)*a(n-2) +6*(n-2)*(56663*n^2-237722*n+252221)*a(n-3) -3*(n-2)*(n-3)*(111625*n-286402)*a(n-4) +110653*(n-2)*(n-3)*(n-4)*a(n-5)=0. - R. J. Mathar, Jan 09 2023
a(n) = 4F3( -n,1/4,1/2,3/4 ; 1/3, 2/3,1 ; -256/27). - R. J. Mathar, Jan 10 2023
a(n) = [x^n] (1 + 5*x + 6*x^2 + 4*x^3 + x^4)^n. - Ilya Gutkovskiy, Apr 17 2025

A381985 E.g.f. A(x) satisfies A(x) = exp(x) * B(x*A(x)), where B(x) = 1 + x*B(x)^3 is the g.f. of A001764.

Original entry on oeis.org

1, 2, 13, 217, 5937, 223641, 10725433, 625007993, 42883208609, 3386452550689, 302545287708201, 30170153462509545, 3322052185576104049, 400328811249634307249, 52406094009429908677049, 7405663486143907784247481, 1123601498350780798756198209, 182173718779147621454796872769
Offset: 0

Views

Author

Seiichi Manyama, Mar 11 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = n!*sum(k=0, n, (k+1)^(n-k)*binomial(4*k+1, k)/((4*k+1)*(n-k)!));

Formula

Let F(x) be the e.g.f. of A364987. F(x) = B(x*A(x)) = exp( 1/3 * Sum_{k>=1} binomial(3*k,k) * (x*A(x))^k/k ).
a(n) = n! * Sum_{k=0..n} (k+1)^(n-k) * A002293(k)/(n-k)!.

A381937 G.f. A(x) satisfies A(x) = (1 + x) * B(x*A(x)), where B(x) is the g.f. of A001764.

Original entry on oeis.org

1, 2, 6, 35, 240, 1805, 14386, 119365, 1020136, 8918423, 79380514, 716911887, 6553219720, 60513355786, 563648995020, 5289485238552, 49963186247220, 474655663418546, 4532279676629700, 43473774550929628, 418706702628897708, 4047555977981218963
Offset: 0

Views

Author

Seiichi Manyama, Mar 10 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, binomial(4*k+1, k)*binomial(k+1, n-k)/(4*k+1));

Formula

a(n) = Sum_{k=0..n} binomial(4*k+1,k) * binomial(k+1,n-k)/(4*k+1).
a(n) = A365178(n) + A365178(n-1).
Previous Showing 11-15 of 15 results.