cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-17 of 17 results.

A349796 Number of non-strict integer partitions of n with at least one part of odd multiplicity that is not the first or last.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 2, 5, 8, 15, 23, 37, 52, 80, 109, 156, 208, 289, 378, 509, 654, 865, 1098, 1425, 1789, 2290, 2852, 3603, 4450, 5569, 6830, 8467, 10321, 12701, 15393, 18805, 22678, 27535, 33057, 39908, 47701, 57304, 68226, 81572, 96766, 115212, 136201
Offset: 0

Views

Author

Gus Wiseman, Dec 25 2021

Keywords

Comments

Also the number of non-weakly alternating non-strict integer partitions of n, where we define a sequence to be weakly alternating if it is alternately weakly increasing and weakly decreasing, starting with either. This sequence involves the somewhat degenerate case where no strict increases are allowed.

Examples

			The a(7) = 1 through a(11) = 15 partitions:
  (3211)  (4211)   (3321)    (5311)     (4322)
          (32111)  (4311)    (6211)     (4421)
                   (5211)    (32221)    (5411)
                   (42111)   (33211)    (6311)
                   (321111)  (43111)    (7211)
                             (52111)    (42221)
                             (421111)   (43211)
                             (3211111)  (53111)
                                        (62111)
                                        (322211)
                                        (332111)
                                        (431111)
                                        (521111)
                                        (4211111)
                                        (32111111)
		

Crossrefs

Counting all non-strict partitions gives A047967.
Signatures of this type are counted by A274230, complement A027383.
The strict instead of non-strict version is A347548, ranked by A350352.
The version for compositions allowing strict is A349053, ranked by A349057.
Allowing strict partitions gives A349061, complement A349060.
The complement in non-strict partitions is A349795.
These partitions are ranked by A350140 = A349794 \ A005117.
A000041 = integer partitions, strict A000009.
A001250 = alternating permutations, complement A348615.
A003242 = Carlitz (anti-run) compositions.
A025047 = alternating compositions, ranked by A345167.
A025048/A025049 = directed alternating compositions.
A096441 = weakly alternating 0-appended partitions.
A345170 = partitions w/ an alternating permutation, ranked by A345172.
A349052 = weakly alternating compositions.
A349056 = weakly alternating permutations of prime indices.
A349798 = weakly but not strongly alternating permutations of prime indices.

Programs

  • Mathematica
    whkQ[y_]:=And@@Table[If[EvenQ[m],y[[m]]<=y[[m+1]],y[[m]]>=y[[m+1]]],{m,1,Length[y]-1}];
    Table[Length[Select[IntegerPartitions[n],!whkQ[#]&&!whkQ[-#]&&!UnsameQ@@#&]],{n,0,30}]

Formula

a(n) = A349061(n) - A347548(n).

A349794 Numbers whose prime signature has an odd term other than the first or last.

Original entry on oeis.org

30, 42, 60, 66, 70, 78, 84, 102, 105, 110, 114, 120, 130, 132, 138, 140, 150, 154, 156, 165, 168, 170, 174, 182, 186, 190, 195, 204, 210, 220, 222, 228, 230, 231, 238, 240, 246, 255, 258, 260, 264, 266, 270, 273, 276, 280, 282, 285, 286, 290, 294, 300, 308
Offset: 1

Views

Author

Gus Wiseman, Dec 06 2021

Keywords

Comments

A number's prime signature (row n of A124010) is the sequence of positive exponents in its prime factorization.
Also numbers whose multiset of prime factors is not weakly alternating, where we define a sequence to be weakly alternating if it is alternately weakly increasing and weakly decreasing, starting with either. This sequence looks at the somewhat degenerate case where no strict decreases are allowed.

Examples

			The terms and their prime indices begin:
   30: {1,2,3}
   42: {1,2,4}
   60: {1,1,2,3}
   66: {1,2,5}
   70: {1,3,4}
   78: {1,2,6}
   84: {1,1,2,4}
  102: {1,2,7}
  105: {2,3,4}
  110: {1,3,5}
  114: {1,2,8}
  120: {1,1,1,2,3}
  130: {1,3,6}
  132: {1,1,2,5}
  138: {1,2,9}
		

Crossrefs

The complement for compositions is A025047, ranked by A345167.
Signatures of this type are counted by A274230, complement A027383.
The strong case is A289553, complement A167171.
The strong case for compositions is A345192, ranked by A345168.
The version for compositions is A349053, ranked by A349057.
These partitions are counted by A349061, complement A349060, strong A349801.
The non-strict case is counted by A349795.
A001250 counts alternating permutations, complement A348615.
A096441 counts weakly alternating partitions if 0 is appended.
A345164 counts alternating permutations of prime indices, weak A349056.
A345170 counts partitions w/ an alternating permutation, ranked by A345172.
A349052 counts weakly alternating compositions.
A349059 counts weakly alternating ordered factorizations, strong A348610.

Programs

  • Mathematica
    Select[Range[100],PrimeNu[#]>1&&!And@@EvenQ/@Take[Last/@FactorInteger[#],{2,-2}]&]

A350138 Number of non-weakly alternating patterns of length n.

Original entry on oeis.org

0, 0, 0, 2, 32, 338, 3560, 40058, 492664, 6647666, 98210192, 1581844994, 27642067000, 521491848218, 10572345303576, 229332715217954, 5301688511602448, 130152723055769810, 3381930236770946120, 92738693031618794378, 2676532576838728227352
Offset: 0

Views

Author

Gus Wiseman, Dec 24 2021

Keywords

Comments

We define a pattern to be a finite sequence covering an initial interval of positive integers. Patterns are counted by A000670 and ranked by A333217.
We define a sequence to be weakly alternating if it is alternately weakly increasing and weakly decreasing, starting with either.
Conjecture: The directed cases, which count non-weakly up/down or non-weakly down/up patterns, are both equal to the strong case: A350252.

Examples

			The a(4) = 32 patterns:
  (1,1,2,3)  (2,1,1,2)  (3,1,1,2)  (4,1,2,3)
  (1,2,2,1)  (2,1,1,3)  (3,1,2,3)  (4,2,1,3)
  (1,2,3,1)  (2,1,2,3)  (3,1,2,4)  (4,3,1,2)
  (1,2,3,2)  (2,1,3,4)  (3,2,1,1)  (4,3,2,1)
  (1,2,3,3)  (2,3,2,1)  (3,2,1,2)
  (1,2,3,4)  (2,3,3,1)  (3,2,1,3)
  (1,2,4,3)  (2,3,4,1)  (3,2,1,4)
  (1,3,2,1)  (2,4,3,1)  (3,3,2,1)
  (1,3,3,2)             (3,4,2,1)
  (1,3,4,2)
  (1,4,3,2)
		

Crossrefs

The unordered version is A274230, complement A052955.
The strong case of compositions is A345192, ranked by A345168.
The strict case is A348615, complement A001250.
For compositions we have A349053, complement A349052, ranked by A349057.
The complement is counted by A349058.
The version for partitions is A349061, complement A349060.
The version for permutations of prime indices: A349797, complement A349056.
The version for ordered factorizations is A350139, complement A349059.
The strong case is A350252, complement A345194. Also the directed case?
A003242 = Carlitz compositions, complement A261983, ranked by A333489.
A005649 = anti-run patterns, complement A069321.
A025047/A129852/A129853 = alternating compositions, ranked by A345167.
A345163 = normal partitions w/ alternating permutation, complement A345162.
A345170 = partitions w/ alternating permutation, complement A345165.
A349055 = normal multisets w/ alternating permutation, complement A349050.

Programs

  • Mathematica
    allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]];
    whkQ[y_]:=And@@Table[If[EvenQ[m],y[[m]]<=y[[m+1]],y[[m]]>=y[[m+1]]],{m,1,Length[y]-1}];
    Table[Length[Select[Join@@Permutations/@allnorm[n],!whkQ[#]&&!whkQ[-#]&]],{n,0,6}]
  • PARI
    R(n,k)={my(v=vector(k,i,1), u=vector(n)); for(r=1, n, if(r%2==0, my(s=v[k]); forstep(i=k, 2, -1, v[i] = s - v[i-1]); v[1] = s); for(i=2, k, v[i] += v[i-1]); u[r]=v[k]); u}
    seq(n)= {concat([0], vector(n,i,1) + sum(k=1, n, (vector(n,i,k^i) - 2*R(n, k))*sum(r=k, n, binomial(r, k)*(-1)^(r-k)) ) )} \\ Andrew Howroyd, Jan 13 2024

Formula

a(n) = A000670(n) - A349058(n).

Extensions

a(9) onwards from Andrew Howroyd, Jan 13 2024

A350139 Number of non-weakly alternating ordered factorizations of n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 4, 0, 0, 0, 2, 0, 2, 0, 0, 0, 0, 0, 10, 0, 0, 0, 0, 0, 2, 0, 2, 0, 0, 0, 12, 0, 0, 0, 4, 0, 2, 0, 0, 0, 2, 0, 20, 0, 0, 0, 0, 0, 2, 0, 10, 0, 0, 0, 12, 0
Offset: 1

Views

Author

Gus Wiseman, Dec 24 2021

Keywords

Comments

The first odd term is a(180) = 69, which has, for example, the non-weakly alternating ordered factorization 2*3*5*3*2.
An ordered factorization of n is a finite sequence of positive integers > 1 with product n. Ordered factorizations are counted by A074206.
We define a sequence to be weakly alternating if it is alternately weakly increasing and weakly decreasing, starting with either.

Examples

			The a(n) ordered factorizations for n = 24, 36, 48, 60:
  (2*3*4)  (2*3*6)    (2*3*8)    (2*5*6)
  (4*3*2)  (6*3*2)    (2*4*6)    (3*4*5)
           (2*3*3*2)  (6*4*2)    (5*4*3)
           (3*2*2*3)  (8*3*2)    (6*5*2)
                      (2*2*3*4)  (10*3*2)
                      (2*3*4*2)  (2*3*10)
                      (2*4*3*2)  (2*2*3*5)
                      (3*2*2*4)  (2*3*5*2)
                      (4*2*2*3)  (2*5*3*2)
                      (4*3*2*2)  (3*2*2*5)
                                 (5*2*2*3)
                                 (5*3*2*2)
		

Crossrefs

Positions of nonzero terms are A122181.
The strong version for compositions is A345192, ranked by A345168.
The strong case is A348613, complement A348610.
The version for compositions is A349053, complement A349052.
As compositions with ones allowed these are ranked by A349057.
The complement is counted by A349059.
A001055 counts factorizations, strict A045778, ordered A074206.
A001250 counts alternating permutations, complement A348615.
A025047 counts weakly alternating compositions, ranked by A345167.
A335434 counts separable factorizations, complement A333487.
A345164 counts alternating perms of prime factors, with twins A344606.
A345170 counts partitions with an alternating permutation.
A348379 counts factorizations w/ alternating perm, complement A348380.
A348611 counts anti-run ordered factorizations, complement A348616.
A349060 counts weakly alternating partitions, complement A349061.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    whkQ[y_]:=And@@Table[If[EvenQ[m],y[[m]]<=y[[m+1]],y[[m]]>=y[[m+1]]],{m,1,Length[y]-1}];
    Table[Length[Select[Join@@Permutations/@facs[n],!whkQ[#]&&!whkQ[-#]&]],{n,100}]

Formula

a(2^n) = A349053(n).

A350137 Nonsquarefree numbers whose prime signature, except possibly the first and last parts, is all even.

Original entry on oeis.org

4, 8, 9, 12, 16, 18, 20, 24, 25, 27, 28, 32, 36, 40, 44, 45, 48, 49, 50, 52, 54, 56, 63, 64, 68, 72, 75, 76, 80, 81, 88, 90, 92, 96, 98, 99, 100, 104, 108, 112, 116, 117, 121, 124, 125, 126, 128, 135, 136, 144, 147, 148, 152, 153, 160, 162, 164, 169, 171, 172
Offset: 1

Views

Author

Gus Wiseman, Dec 23 2021

Keywords

Comments

A number's prime signature (row n of A124010) is the sequence of positive exponents in its prime factorization.
Also nonsquarefree numbers whose prime factors, taken in order and with multiplicity, are alternately constant and weakly increasing, starting with either.
Also the Heinz numbers of non-strict integer partitions whose part multiplicities, except possibly the first and last, are all even. These are counted by A349795.

Examples

			The terms together with their prime indices begin:
    4: {1,1}
    8: {1,1,1}
    9: {2,2}
   12: {1,1,2}
   16: {1,1,1,1}
   18: {1,2,2}
   20: {1,1,3}
   24: {1,1,1,2}
   25: {3,3}
   27: {2,2,2}
   28: {1,1,4}
   32: {1,1,1,1,1}
   36: {1,1,2,2}
   40: {1,1,1,3}
   44: {1,1,5}
   45: {2,2,3}
   48: {1,1,1,1,2}
		

Crossrefs

This is the nonsquarefree case of the complement of A349794.
These are the Heinz numbers of the partitions counted by A349795.
A version for compositions is A349799, counted by A349800.
A complementary version is A350140, counted by A349796.
A001250 = alternating permutations, ranked by A349051, complement A348615.
A005117 = squarefree numbers, complement A013929.
A025047/A025048/A025049 = alternating compositions, ranked by A345167.
A056239 adds up prime indices, row sums of A112798, row lengths A001222.
A124010 = prime signature, sorted A118914.
A345164 = alternating permutations of prime indices, complement A350251.
A349052/A129852/A129853 = weakly alternating compositions.
A349053 = non-weakly alternating compositions, ranked by A349057.
A349056 = weakly alternating permutations of prime indices.
A349058 = weakly alternating patterns, complement A350138.
A349060 = weakly alternating partitions, complement A349061.

Programs

  • Mathematica
    Select[Range[100],!SquareFreeQ[#]&&(PrimePowerQ[#]||And@@EvenQ/@Take[Last/@FactorInteger[#],{2,-2}])&]

A350140 Nonsquarefree numbers whose prime signature has at least one odd part other the first or last.

Original entry on oeis.org

60, 84, 120, 132, 140, 150, 156, 168, 204, 220, 228, 240, 260, 264, 270, 276, 280, 294, 300, 308, 312, 315, 336, 340, 348, 364, 372, 378, 380, 408, 420, 440, 444, 456, 460, 476, 480, 490, 492, 495, 516, 520, 528, 532, 540, 552, 560, 564, 572, 580, 585, 588
Offset: 1

Views

Author

Gus Wiseman, Dec 25 2021

Keywords

Comments

A number's prime signature (row n of A124010) is the sequence of positive exponents in its prime factorization.
Also Heinz numbers of non-weakly alternating non-strict integer partitions, where we define a sequence to be weakly alternating if it is alternately weakly increasing and weakly decreasing, starting with either. These partitions are counted by A349796. This sequence involves the somewhat degenerate case where no strict increases are allowed.

Examples

			The terms together with their Heinz partitions begin (A-E = 10-14):
     60: (3211)      276: (9211)      420: (43211)
     84: (4211)      280: (43111)     440: (53111)
    120: (32111)     294: (4421)      444: (C211)
    132: (5211)      300: (33211)     456: (82111)
    140: (4311)      308: (5411)      460: (9311)
    150: (3321)      312: (62111)     476: (7411)
    156: (6211)      315: (4322)      480: (3211111)
    168: (42111)     336: (421111)    490: (4431)
    204: (7211)      340: (7311)      492: (D211)
    220: (5311)      348: (A211)      495: (5322)
    228: (8211)      364: (6411)      516: (E211)
    240: (321111)    372: (B211)      520: (63111)
    260: (6311)      378: (42221)     528: (521111)
    264: (52111)     380: (8311)      532: (8411)
    270: (32221)     408: (72111)     540: (322211)
		

Crossrefs

Including all nonsquarefree numbers gives A013929, complement A005117.
Subsets include A088860 and A110286.
Signatures of this type are counted by A274230, complement A027383.
The strict instead of non-strict version is A336568, counted by A347548.
A version for compositions allowing strict is A349057, counted by A349053.
Allowing strict partitions gives A349794, counted by A349061.
These partitions are counted by A349796.
The complement in nonsquarefree partitions is A350137, counted by A349795.
A000041 = integer partitions, strict A000009.
A001250 = alternating permutations, ranked by A349051, complement A348615.
A003242 = Carlitz (anti-run) compositions.
A025047/A025048/A025049 = alternating compositions, ranked by A345167.
A056239 adds up prime indices, row sums of A112798, row lengths A001222.
A096441 = weakly alternating 0-appended partitions.
A124010 = prime signature, sorted A118914.
A345164 = alternating permutations of prime indices, complement A350251.
A345170 = partitions w/ an alternating permutation, ranked by A345172.
A349052/A129852/A129853 = weakly alternating compositions.
A349056 = weakly alternating permutations of prime indices.
A349058 = weakly alternating patterns, complement A350138.
A349060 = weakly alternating partitions, strong A349801.
A349798 = weakly but not strongly alternating perms of prime indices.

Programs

  • Mathematica
    Select[Range[300],!SquareFreeQ[#]&&PrimeNu[#]>1&& !And@@EvenQ/@Take[Last/@FactorInteger[#],{2,-2}]&]

Formula

Complement of A005117 in A349794.

A350353 Numbers whose multiset of prime factors has a permutation that is not weakly alternating.

Original entry on oeis.org

30, 36, 42, 60, 66, 70, 72, 78, 84, 90, 100, 102, 105, 108, 110, 114, 120, 126, 130, 132, 138, 140, 144, 150, 154, 156, 165, 168, 170, 174, 180, 182, 186, 190, 195, 196, 198, 200, 204, 210, 216, 220, 222, 225, 228, 230, 231, 234, 238, 240, 246, 252, 255, 258
Offset: 1

Views

Author

Gus Wiseman, Jan 13 2022

Keywords

Comments

We define a sequence to be weakly alternating if it is alternately weakly increasing and weakly decreasing, starting with either.

Examples

			The terms together with a (generally not unique) non-weakly alternating permutation of each multiset of prime indices begin:
   30 : (1,2,3)       100 : (1,3,3,1)
   36 : (1,2,2,1)     102 : (1,2,7)
   42 : (1,2,4)       105 : (2,3,4)
   60 : (1,1,2,3)     108 : (1,2,2,1,2)
   66 : (1,2,5)       110 : (1,3,5)
   70 : (1,3,4)       114 : (1,2,8)
   72 : (1,1,2,2,1)   120 : (1,1,1,2,3)
   78 : (1,2,6)       126 : (1,2,4,2)
   84 : (1,1,2,4)     130 : (1,3,6)
   90 : (1,2,3,2)     132 : (1,1,2,5)
		

Crossrefs

The strong version is A289553, complement A167171.
These are the positions of nonzero terms in A349797.
Below, WA = "weakly alternating":
- WA compositions are counted by A349052/A129852/A129853.
- Non-WA compositions are counted by A349053, ranked by A349057.
- WA permutations of prime factors = A349056, complement A349797.
- WA patterns are counted by A349058, complement A350138.
- WA ordered factorizations are counted by A349059, complement A350139.
- WA partitions are counted by A349060, complement A349061.
A001250 counts alternating permutations, complement A348615.
A008480 counts permutations of prime factors.
A025047 = alternating compositions, ranked by A345167, complement A345192.
A056239 adds up prime indices, row sums of A112798 (row lengths A001222).
A071321 gives the alternating sum of prime factors, reverse A071322.
A335452 counts anti-run permutations of prime factors, complement A336107.
A345164 = alternating permutations of prime factors, complement A350251.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    whkQ[y_]:=And@@Table[If[EvenQ[m],y[[m]]<=y[[m+1]],y[[m]]>=y[[m+1]]],{m,1,Length[y]-1}];
    Select[Range[100],Select[Permutations[primeMS[#]],!whkQ[#]&&!whkQ[-#]&]!={}&]
Previous Showing 11-17 of 17 results.