cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A366366 G.f. satisfies A(x) = (1 + x/A(x)^4)/(1 - x).

Original entry on oeis.org

1, 2, -6, 58, -574, 6402, -75878, 939290, -12000318, 157050178, -2094657926, 28368411194, -389079656446, 5393118559938, -75431624084838, 1063251390845338, -15088643098754942, 215396586102923138, -3091050571516120582, 44566089825496186170
Offset: 0

Views

Author

Seiichi Manyama, Oct 08 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = (-1)^(n-1)*sum(k=0, n, binomial(5*k-1, k)*binomial(4*k-1, n-k)/(5*k-1));

Formula

a(n) = (-1)^(n-1) * Sum_{k=0..n} binomial(5*k-1,k) * binomial(4*k-1,n-k)/(5*k-1).

A378237 Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,0) = 0^n and T(n,k) = k * Sum_{r=0..n} binomial(n,r) * binomial(n+3*r+k,n)/(n+3*r+k) for k > 0.

Original entry on oeis.org

1, 1, 0, 1, 2, 0, 1, 4, 10, 0, 1, 6, 24, 74, 0, 1, 8, 42, 188, 642, 0, 1, 10, 64, 350, 1680, 6082, 0, 1, 12, 90, 568, 3234, 16212, 60970, 0, 1, 14, 120, 850, 5440, 31878, 164584, 635818, 0, 1, 16, 154, 1204, 8450, 54888, 328426, 1732172, 6826690, 0, 1, 18, 192, 1638, 12432, 87402, 574848, 3494142, 18728352, 74958914, 0
Offset: 0

Views

Author

Seiichi Manyama, Nov 20 2024

Keywords

Examples

			Square array begins:
   1,     1,      1,      1,      1,      1,       1, ...
   0,     2,      4,      6,      8,     10,      12, ...
   0,    10,     24,     42,     64,     90,     120, ...
   0,    74,    188,    350,    568,    850,    1204, ...
   0,   642,   1680,   3234,   5440,   8450,   12432, ...
   0,  6082,  16212,  31878,  54888,  87402,  131964, ...
   0, 60970, 164584, 328426, 574848, 931770, 1433544, ...
		

Crossrefs

Columns k=0..1 give A000007, A349310.

Programs

  • PARI
    T(n, k, t=1, u=3) = if(k==0, 0^n, k*sum(r=0, n, binomial(n, r)*binomial(t*n+u*r+k, n)/(t*n+u*r+k)));
    matrix(7, 7, n, k, T(n-1, k-1))

Formula

G.f. A_k(x) of column k satisfies A_k(x) = ( 1 + x * A_k(x)^(1/k) * (1 + A_k(x)^(3/k)) )^k for k > 0.
G.f. of column k: B(x)^k where B(x) is the g.f. of A349310.
B(x)^k = B(x)^(k-1) + x * B(x)^k + x * B(x)^(k+3). So T(n,k) = T(n,k-1) + T(n-1,k) + T(n-1,k+3) for n > 0.

A348957 G.f. A(x) satisfies A(x) = (1 + x * A(-x)) / (1 - x * A(x)).

Original entry on oeis.org

1, 2, 2, 10, 18, 98, 210, 1194, 2786, 16258, 39906, 236938, 601458, 3615330, 9399858, 57024426, 150947010, 922283522, 2475603138, 15212318730, 41290579410, 254909413218, 698230131858, 4327273358250, 11943274468770, 74260741616514, 206279837823650, 1286199407132554
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 05 2021

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 27; A[] = 0; Do[A[x] = (1 + x A[-x])/(1 - x A[x]) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
    a[0] = 1; a[n_] := a[n] = -(-1)^n a[n - 1] + Sum[a[k] a[n - k - 1], {k, 0, n - 1}]; Table[a[n], {n, 0, 27}]
    CoefficientList[y/.AsymptoticSolve[y-y^2+x(1+y^3)==0,y->1,{x,0,27}][[1]],x] (* Alexander Burstein, Nov 26 2021 *)

Formula

a(0) = 1; a(n) = -(-1)^n * a(n-1) + Sum_{k=0..n-1} a(k) * a(n-k-1).
a(n) ~ c * 3^(3*n/4) * (1 + sqrt(3))^n / (sqrt(2*Pi) * n^(3/2) * 2^(n/2)), where c = 3^(1/4) if n is even and c = (1 + sqrt(3))/sqrt(2) if n is odd. - Vaclav Kotesovec, Nov 14 2021
From Alexander Burstein, Nov 26 2021: (Start)
G.f.: A(-x) = 1/A(x).
G.f.: A(x) = 1 + x*(1+A(x)^3)/A(x). (End)
a(n) = (-1)^(n-1) * (1/n) * Sum_{k=0..n} binomial(n,k) * binomial(2*n-3*k-2,n-1) for n > 0. - Seiichi Manyama, Apr 11 2024

A364195 Expansion of g.f. A(x) satisfying A(x) = 1 + x * A(x)^5 * (1 + A(x)^2).

Original entry on oeis.org

1, 2, 24, 412, 8280, 181904, 4232048, 102479184, 2555884896, 65207430848, 1693785940992, 44643489969792, 1190986788639232, 32097745138518528, 872595854798515456, 23900545715576753408, 658934625866433496576, 18271554709525993556992, 509241947434834351042560
Offset: 0

Views

Author

Seiichi Manyama, Jul 13 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, binomial(n, k)*binomial(5*n+2*k+1, n)/(5*n+2*k+1));

Formula

a(n) = Sum_{k=0..n} binomial(n,k) * binomial(5*n+2*k+1,n)/(5*n+2*k+1).

A376160 G.f. satisfies A(x) = 1 / ((1-x)^3 - x*A(x)^3).

Original entry on oeis.org

1, 4, 25, 260, 3205, 42966, 609567, 8999164, 136811781, 2127343669, 33675622992, 540878965522, 8792433396559, 144383416380703, 2391557494237062, 39910530610590312, 670383542665237001, 11325278943044058378, 192301381444863249559, 3280101940070399446926
Offset: 0

Views

Author

Seiichi Manyama, Sep 12 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, binomial(n+11*k+2, n-k)*binomial(4*k, k)/(3*k+1));

Formula

a(n) = Sum_{k=0..n} binomial(n+11*k+2,n-k) * binomial(4*k,k)/(3*k+1).

A379194 G.f. A(x) satisfies A(x) = (1 + x*A(x))^2/(1 - x*A(x)^3).

Original entry on oeis.org

1, 3, 19, 174, 1883, 22323, 280409, 3666736, 49386326, 680431419, 9544684113, 135852904486, 1957119390279, 28482417043498, 418119577938769, 6184065626127498, 92062362629472668, 1378427894172778961, 20744229318047760620, 313606289763390553200, 4760422971894347226659
Offset: 0

Views

Author

Seiichi Manyama, Dec 17 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, binomial(n+3*k+1, k)*binomial(2*n+4*k+2, n-k)/(n+3*k+1));

Formula

a(n) = Sum_{k=0..n} binomial(n+3*k+1,k) * binomial(2*n+4*k+2,n-k)/(n+3*k+1).
Previous Showing 11-16 of 16 results.