cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 28 results. Next

A350387 a(n) is the sum of the odd exponents in the prime factorization of n.

Original entry on oeis.org

0, 1, 1, 0, 1, 2, 1, 3, 0, 2, 1, 1, 1, 2, 2, 0, 1, 1, 1, 1, 2, 2, 1, 4, 0, 2, 3, 1, 1, 3, 1, 5, 2, 2, 2, 0, 1, 2, 2, 4, 1, 3, 1, 1, 1, 2, 1, 1, 0, 1, 2, 1, 1, 4, 2, 4, 2, 2, 1, 2, 1, 2, 1, 0, 2, 3, 1, 1, 2, 3, 1, 3, 1, 2, 1, 1, 2, 3, 1, 1, 0, 2, 1, 2, 2, 2, 2, 4, 1, 2, 2, 1, 2, 2, 2, 6, 1, 1, 1, 0, 1, 3, 1, 4, 3
Offset: 1

Views

Author

Amiram Eldar, Dec 28 2021

Keywords

Comments

First differs from A125073 at n = 32.
a(n) is the number of prime divisors of n, counted with multiplicity, with an odd exponent in the prime factorization of n.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[OddQ[e], e, 0]; a[1] = 0; a[n_] := Plus @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = my(f=factor(n)); sum(k=1, #f~, if (f[k,2] %2, f[k,2])); \\ Michel Marcus, Dec 28 2021
  • Python
    from sympy import factorint
    def a(n): return sum(e for e in factorint(n).values() if e%2 == 1)
    print([a(n) for n in range(1, 106)]) # Michael S. Branicky, Dec 28 2021
    

Formula

Additive with a(p^e) = e if e is odd and 0 otherwise.
a(n) = A001222(A350389(n)).
a(n) = 0 if and only if n is a positive square (A000290 \ {0}).
a(n) = A001222(n) - A350386(n).
a(n) = A001222(n) if and only if n is an exponentially odd number (A268335).
Sum_{k=1..n} a(k) = n * log(log(n)) + c * n + O(n/log(n)), where c = A083342 - Sum_{p prime} 2*p/((p-1)*(p+1)^2) = gamma + Sum_{p prime} (log(1-1/p) + (p^2+1)/((p-1)*(p+1)^2)) = 0.2384832800... and gamma is Euler's constant (A001620).

A351571 Arithmetic derivative of the sum of the divisors of the largest unitary divisor of n that is an exponentially odd number.

Original entry on oeis.org

0, 1, 4, 0, 5, 16, 12, 8, 0, 21, 16, 4, 9, 44, 44, 0, 21, 1, 24, 5, 80, 60, 44, 92, 0, 41, 68, 12, 31, 156, 80, 51, 112, 81, 112, 0, 21, 92, 92, 123, 41, 272, 48, 16, 5, 156, 112, 4, 0, 1, 156, 9, 81, 244, 156, 244, 176, 123, 92, 44, 33, 272, 12, 0, 124, 384, 72, 21, 272, 384, 156, 8, 39, 101, 4, 24, 272, 332, 176, 5
Offset: 1

Views

Author

Antti Karttunen, Feb 23 2022

Keywords

Crossrefs

Cf. A000203, A003415, A268335 (exponentially odd numbers), A342925, A350389, A351569, A351570, A351573.

Programs

  • PARI
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    A350389(n) = { my(m=1, f=factor(n)); for(k=1,#f~,if(1==(f[k,2]%2), m *= (f[k,1]^f[k,2]))); (m); };
    A351571(n) = A003415(sigma(A350389(n)));

Formula

A367513 The exponentially evil part of n: the largest unitary divisor of n that is an exponentially evil number (A262675).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 8, 1, 1, 27, 1, 1, 1, 1, 32, 1, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 27, 1, 8, 1, 1, 1, 1, 1, 1, 1, 64, 1, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Nov 21 2023

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := p^(e * (1 - ThueMorse[e])); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(hammingweight(f[i, 2])%2, 1, f[i, 1]^f[i, 2]));}
    
  • Python
    from math import prod
    from sympy import factorint
    def A367513(n): return prod(p**e for p, e in factorint(n).items() if e.bit_count()&1^1) # Chai Wah Wu, Nov 23 2023

Formula

Multiplicative with a(p^e) = p^(e*A010059(e)) = p^A102391(e).
a(n) = n/A367514(n).
A001221(a(n)) = A367512(n).
A034444(a(n)) = A367516(n).
a(n) >= 1, with equality if and only if n is an exponentially odious number (A270428).
a(n) <= n, with equality if and only if n is an exponentially evil number (A262675).

A367514 The exponentially odious part of n: the largest unitary divisor of n that is an exponentially odious number (A270428).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 1, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 3, 25, 26, 1, 28, 29, 30, 31, 1, 33, 34, 35, 36, 37, 38, 39, 5, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 2, 55, 7, 57, 58, 59, 60, 61, 62, 63, 1, 65, 66, 67, 68, 69, 70
Offset: 1

Views

Author

Amiram Eldar, Nov 21 2023

Keywords

Comments

First differs from A056192 at n = 32, and from A270418 and A367168 at n = 128.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := p^(e*ThueMorse[e]); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(hammingweight(f[i, 2])%2, f[i, 1]^f[i, 2], 1));}
    
  • Python
    from math import prod
    from sympy import factorint
    def A367514(n): return prod(p**e for p, e in factorint(n).items() if e.bit_count()&1) # Chai Wah Wu, Nov 23 2023

Formula

Multiplicative with a(p^e) = p^(e*A010060(e)) = p^A102392(e).
a(n) = n/A367513(n).
A001221(a(n)) = A293439(n).
A034444(a(n)) = A367515(n).
a(n) >= 1, with equality if and only if n is an exponentially evil number (A262675).
a(n) <= n, with equality if and only if n is an exponentially odious number (A270428).
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = Product_{p prime} f(1/p) = 0.88585652437242918295..., and f(x) = (x+2)/(2*(x+1)) + (x/2) * Product_{k>=0} (1 - x^(2^k)).

A368167 The largest unitary divisor of n that is a cubefull exponentially odd number (A335988).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 8, 1, 1, 27, 1, 1, 1, 1, 32, 1, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 27, 1, 8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Dec 14 2023

Keywords

Comments

First differs from A056191 and A366126 at n = 32, and from A367513 at n = 64.
Also, the largest exponentially odd unitary divisor of the powerful part on n.
Also, the powerful part of the largest exponentially odd unitary divisor of n.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[e == 1 || EvenQ[e], 1, p^e]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i, 2] == 1 || !(f[i, 2]%2), 1, f[i, 1]^f[i, 2]));}

Formula

Multiplicative with a(p^e) = p^e if e is odd that is larger than 1, and 1 otherwise.
a(n) = A350389(A057521(n)).
a(n) = A057521(A350389(n)).
a(n) >= 1, with equality if and only if n is in A335275.
a(n) <= n, with equality if and only if n is in A335988.

A365402 The number of divisors of the largest unitary divisor of n that is an exponentially odd number.

Original entry on oeis.org

1, 2, 2, 1, 2, 4, 2, 4, 1, 4, 2, 2, 2, 4, 4, 1, 2, 2, 2, 2, 4, 4, 2, 8, 1, 4, 4, 2, 2, 8, 2, 6, 4, 4, 4, 1, 2, 4, 4, 8, 2, 8, 2, 2, 2, 4, 2, 2, 1, 2, 4, 2, 2, 8, 4, 8, 4, 4, 2, 4, 2, 4, 2, 1, 4, 8, 2, 2, 4, 8, 2, 4, 2, 4, 2, 2, 4, 8, 2, 2, 1, 4, 2, 4, 4, 4, 4
Offset: 1

Views

Author

Amiram Eldar, Sep 03 2023

Keywords

Comments

The sum of these divisors is A351569(n).
All the terms are either 1 or even (A004277).

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[OddQ[e], e + 1, 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = vecprod(apply(x -> if(x%2, x+1, 1), factor(n)[, 2]));
    
  • Python
    from math import prod
    from sympy import factorint
    def A365402(n): return prod(e+1 for e in factorint(n).values() if e&1) # Chai Wah Wu, Nov 17 2023
  • SageMath
    def a(n): return prod((valuation(n,p)+1) for p in prime_divisors(n) if valuation(n,p)%2==1) # Orges Leka, Nov 16 2023
    

Formula

a(n) = A000005(A350389(n)).
a(n) = A000005(n) / A365401(n).
a(n) <= A000005(n) with equality if and only if n is an exponentially odd number (A268335).
a(n) >= 1 with equality if and only if n is a square (A000290).
Multiplicative with a(p^e) = 1 if e is even, and e+1 if e is odd.
Dirichlet g.f.: zeta(2*s)^2 * Product_{p prime} (1 + 2/p^s - 1/p^(2*s)).
From Vaclav Kotesovec, Sep 05 2023: (Start)
Dirichlet g.f.: zeta(s)^2 * zeta(2*s)^2 * Product_{p prime} (1 - 4/p^(2*s) + 4/p^(3*s) - 1/p^(4*s)).
Let f(s) = Product_{p prime} (1 - 4/p^(2*s) + 4/p^(3*s) - 1/p^(4*s)).
Sum_{k=1..n} a(k) ~ f(1) * Pi^4 * n / 36 * (log(n) + 2*gamma - 1 + 24*Zeta'(2)/Pi^2 + f'(1)/f(1)), where
f(1) = Product_{p prime} (1 - 4/p^2 + 4/p^3 - 1/p^4) = 0.2177787166195363783230075141194468131307977550013559376482764035236264911...
f'(1) = f(1) * Sum_{p prime} 4*(2*p - 1) * log(p) / (1 - 3*p + p^2 + p^3) = f(1) * 3.3720882314412399056794495057358594564001229865925330149186567502684770675...
and gamma is the Euler-Mascheroni constant A001620. (End)
a(n) = Sum_{d|n} (-1)^(Sum_{p|gcd(d,n/d)} v_p(d)*v_p(n/d)), where v_p(x) denotes the valuation of x at the prime p. - Orges Leka, Nov 16 2023

A375032 The maximum odd exponent in the prime factorization of n, or 0 if no such exponent exists.

Original entry on oeis.org

0, 1, 1, 0, 1, 1, 1, 3, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 3, 0, 1, 3, 1, 1, 1, 1, 5, 1, 1, 1, 0, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 3, 1, 3, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 0, 1, 1, 1, 3, 1
Offset: 1

Views

Author

Amiram Eldar, Jul 28 2024

Keywords

Comments

The asymptotic density of the occurrences of 0's is 0 (the asymptotic density of squares).
The asymptotic density of the occurrences of 1's is d(0) = Product_{p prime} (1 - 1/(p^2*(p+1))) = 0.881513... (A065465, asymptotic density of A335275).
The asymptotic density of the occurrences of 2*k+1, for k = 1, 2, ..., is d(k) = Product_{p prime} (1 - 1/(p^(2*k+2)*(p+1))) - Product_{p prime} (1 - 1/(p^(2*k)*(p+1))).

Crossrefs

Programs

  • Mathematica
    a[n_] := Max[0, Max[Select[FactorInteger[n][[;; , 2]], OddQ]]]; a[1] = 0; Array[a, 100]
  • PARI
    a(n) = {my(e = select(x -> (x % 2), factor(n)[,2])); if(#e == 0, 0, vecmax(e));}

Formula

max(a(n), A375033(n)) = A051903(n).
a(n) = 0 if and only if n is a square (A000290).
a(n) = 1 if and only if n is in A335275 \ A000290.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Sum_{k>=0} (2*k+1) * d(k) = 1.30000522546018852138..., where d(k) is defined in the Comments section above.
a(n) = A051903(A350389(n)). - Amiram Eldar, Aug 17 2024

A351573 Arithmetic derivative of the largest unitary divisor of n that is an exponentially odd number.

Original entry on oeis.org

0, 1, 1, 0, 1, 5, 1, 12, 0, 7, 1, 1, 1, 9, 8, 0, 1, 1, 1, 1, 10, 13, 1, 44, 0, 15, 27, 1, 1, 31, 1, 80, 14, 19, 12, 0, 1, 21, 16, 68, 1, 41, 1, 1, 1, 25, 1, 1, 0, 1, 20, 1, 1, 81, 16, 92, 22, 31, 1, 8, 1, 33, 1, 0, 18, 61, 1, 1, 26, 59, 1, 12, 1, 39, 1, 1, 18, 71, 1, 1, 0, 43, 1, 10, 22, 45, 32, 140, 1, 7, 20, 1, 34
Offset: 1

Views

Author

Antti Karttunen, Feb 23 2022

Keywords

Crossrefs

Cf. A003415, A350388, A268335 (exponentially odd numbers), A351571, A351572.

Programs

  • Mathematica
    f1[p_, e_] := If[OddQ[e], p^e, 1]; f2[p_, e_] := If[OddQ[e], e/p, 0]; a[1] = 0; a[n_] := (Times @@ f1 @@@ (f = FactorInteger[n])) * (Plus @@ f2 @@@ f); Array[a, 100] (* Amiram Eldar, Feb 23 2022 *)
  • PARI
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    A350389(n) = { my(m=1, f=factor(n)); for(k=1,#f~,if(1==(f[k,2]%2), m *= (f[k,1]^f[k,2]))); (m); };
    A351573(n) = A003415(A350389(n));

Formula

a(n) = A003415(A350389(n)).

A377821 Powerful numbers that have no more than one odd exponent in their prime factorization.

Original entry on oeis.org

1, 4, 8, 9, 16, 25, 27, 32, 36, 49, 64, 72, 81, 100, 108, 121, 125, 128, 144, 169, 196, 200, 225, 243, 256, 288, 289, 324, 343, 361, 392, 400, 432, 441, 484, 500, 512, 529, 576, 625, 648, 675, 676, 729, 784, 800, 841, 900, 961, 968, 972, 1024, 1089, 1125, 1152
Offset: 1

Views

Author

Amiram Eldar, Nov 09 2024

Keywords

Comments

Powerful numbers k such that A350389(k) is either 1 or a prime power with an odd exponent (A246551).

Crossrefs

Disjoint union of A000290 \ {0} and A377820.

Programs

  • Mathematica
    With[{max = 1200}, Select[Union@ Flatten@Table[i^2 * j^3, {j, 1, max^(1/3)}, {i, 1, Sqrt[max/j^3]}], # == 1 || Count[FactorInteger[#][[;; , 2]], _?OddQ] <= 1 &]]
  • PARI
    is(k) = if(k == 1, 1, my(e = factor(k)[, 2]); vecmin(e) > 1 && #select(x -> (x%2), e) <= 1);

Formula

Sum_{n>=1} 1/a(n) = zeta(2) * (1 + P(3)) = A013661 * (1 + A085541) = 1.93240708584418977513... .

A368470 a(n) is the number of exponentially odd divisors of the largest unitary divisor of n that is an exponentially odd number (A268335).

Original entry on oeis.org

1, 2, 2, 1, 2, 4, 2, 3, 1, 4, 2, 2, 2, 4, 4, 1, 2, 2, 2, 2, 4, 4, 2, 6, 1, 4, 3, 2, 2, 8, 2, 4, 4, 4, 4, 1, 2, 4, 4, 6, 2, 8, 2, 2, 2, 4, 2, 2, 1, 2, 4, 2, 2, 6, 4, 6, 4, 4, 2, 4, 2, 4, 2, 1, 4, 8, 2, 2, 4, 8, 2, 3, 2, 4, 2, 2, 4, 8, 2, 2, 1, 4, 2, 4, 4, 4, 4
Offset: 1

Views

Author

Amiram Eldar, Dec 26 2023

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[OddQ[e], (e + 3)/2, 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i,2]%2, (f[i,2]+3)/2, 1));}

Formula

a(n) = A033634(A350389(n)).
Multiplicative with a(p^e) = (e+3)/2 if e is odd and 1 otherwise.
a(n) >= 1, with equality if and only if n is a square (A000290).
a(n) <= A000005(n), with equality if and only if n is squarefree (A005117).
Dirichlet g.f.: zeta(2*s)^2 * Product_{p prime} (1 + 2/p^s - 1/p^(2*s) - 1/p^(3*s)).
From Vaclav Kotesovec, Dec 26 2023: (Start)
Dirichlet g.f.: zeta(s)^2 * Product_{p prime} (1 - 1/p^s + p^s/(1 + p^s)^2).
Let f(s) = Product_{p prime} (1 - 1/p^s + p^s/(1 + p^s)^2).
Sum_{k=1..n} a(k) ~ f(1) * n * (log(n) + 2*gamma - 1 + f'(1)/f(1)), where
f(1) = Product_{p prime} (1 - (2*p+1) / (p*(p+1)^2)) = 0.528940778823659679133966695786017426052491935740673837882972347697...,
f'(1) = f(1) * Sum_{p prime} (4*p^2 + 3*p + 1) * log(p) / (p^4 + 3*p^3 + p^2 - 2*p - 1) = f(1) * 1.36109933267802415215189866467122940932493907539386280428818...
and gamma is the Euler-Mascheroni constant A001620. (End)
Previous Showing 11-20 of 28 results. Next