A368471 a(n) is the sum of exponentially odd divisors of the largest unitary divisor of n that is an exponentially odd number (A268335).
1, 3, 4, 1, 6, 12, 8, 11, 1, 18, 12, 4, 14, 24, 24, 1, 18, 3, 20, 6, 32, 36, 24, 44, 1, 42, 31, 8, 30, 72, 32, 43, 48, 54, 48, 1, 38, 60, 56, 66, 42, 96, 44, 12, 6, 72, 48, 4, 1, 3, 72, 14, 54, 93, 72, 88, 80, 90, 60, 24, 62, 96, 8, 1, 84, 144, 68, 18, 96, 144
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
f[p_, e_] := If[OddQ[e], 1 + (p^(e + 2) - p)/(p^2 - 1), 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
-
PARI
a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i,2]%2, (f[i,1]^(f[i,2]+2) - f[i,1])/(f[i,1]^2 - 1) + 1, 1));}
Formula
Multiplicative with a(p^e) = (p^(e+2) - p)/(p^2 - 1) + 1 if e is odd and 1 otherwise.
a(n) >= 1, with equality if and only if n is a square (A000290).
Sum_{k=1..n} a(k) ~ c * n^2, where c = (Pi^6/1080) * Product_{p prime} (1 - 1/p^2 - 1/p^4 + 1/p^5) = 0.51287686448947428073... .
Comments