cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-28 of 28 results.

A368471 a(n) is the sum of exponentially odd divisors of the largest unitary divisor of n that is an exponentially odd number (A268335).

Original entry on oeis.org

1, 3, 4, 1, 6, 12, 8, 11, 1, 18, 12, 4, 14, 24, 24, 1, 18, 3, 20, 6, 32, 36, 24, 44, 1, 42, 31, 8, 30, 72, 32, 43, 48, 54, 48, 1, 38, 60, 56, 66, 42, 96, 44, 12, 6, 72, 48, 4, 1, 3, 72, 14, 54, 93, 72, 88, 80, 90, 60, 24, 62, 96, 8, 1, 84, 144, 68, 18, 96, 144
Offset: 1

Views

Author

Amiram Eldar, Dec 26 2023

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[OddQ[e], 1 + (p^(e + 2) - p)/(p^2 - 1), 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i,2]%2, (f[i,1]^(f[i,2]+2) - f[i,1])/(f[i,1]^2 - 1) + 1, 1));}

Formula

a(n) = A033634(A350389(n)).
Multiplicative with a(p^e) = (p^(e+2) - p)/(p^2 - 1) + 1 if e is odd and 1 otherwise.
a(n) >= 1, with equality if and only if n is a square (A000290).
a(n) <= A000203(n), with equality if and only if n is squarefree (A005117).
Sum_{k=1..n} a(k) ~ c * n^2, where c = (Pi^6/1080) * Product_{p prime} (1 - 1/p^2 - 1/p^4 + 1/p^5) = 0.51287686448947428073... .

A370079 The product of the odd exponents of the prime factorization of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 3, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Feb 09 2024

Keywords

Comments

First differs from A363329 at n = 32.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[OddQ[e], e, 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = vecprod(apply(x -> if(x%2, x, 1), factor(n)[, 2]));

Formula

a(n) = A005361(A350389(n)).
Multiplicative with a(p^e) = e if e is odd, and 1 if e is even.
a(n) = A005361(n)/A370080(n).
a(n) >= 1, with equality if and only if n is in A335275.
a(n) <= A005361(n), with equality if and only if n is an exponentially odd number (A268335).
Dirichlet g.f.: zeta(2*s)^2 * Product_{p prime} (1 + 1/p^s - 1/p^(2*s) + 1/p^(3*s)).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = zeta(2)^2 * Product_{p prime} (1 - 2/p^2 + 2/p^3 - 1/p^4) = 1.32800597172596287374... .
Dirichlet g.f.: zeta(s) * Product_{p prime} (1 + 2/((p^s - 1)*(p^s + 1)^2)). - Vaclav Kotesovec, Feb 11 2024

A374538 a(n) is the sum of the squares of the unitary divisors of n that are exponentially odd numbers (A268335).

Original entry on oeis.org

1, 5, 10, 1, 26, 50, 50, 65, 1, 130, 122, 10, 170, 250, 260, 1, 290, 5, 362, 26, 500, 610, 530, 650, 1, 850, 730, 50, 842, 1300, 962, 1025, 1220, 1450, 1300, 1, 1370, 1810, 1700, 1690, 1682, 2500, 1850, 122, 26, 2650, 2210, 10, 1, 5, 2900, 170, 2810, 3650, 3172
Offset: 1

Views

Author

Amiram Eldar, Jul 11 2024

Keywords

Comments

The number of unitary divisors of n that are exponentially odd is A055076(n) and their sum is A358346(n).

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := 1 + If[OddQ[e], p^(2*e), 0]; a[n_] := Times @@ f @@@ FactorInteger[n]; a[1] = 1; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, 1 + if(f[i, 2]%2,  f[i, 1]^(2*f[i, 2]), 0));}

Formula

a(n) = A034676(A350389(n)).
a(n) >= 1 with equality if and only if n is a square (A000290).
a(n) <= A374537(n) with equality if and only if n is squarefree (A005117).
Multiplicative with a(p^e) = p^(2*e) + 1 if e is odd, and 1 otherwise.
Dirichlet g.f.: zeta(s) * zeta(2*s-4) * Product_{p prime} (1 + 1/p^(s-2) - 1/p^(2*s-4) - 1/p^(2*s-2)).
Sum_{k=1..n} a(k) ~ c * n^3 / 3, where c = zeta(2) * zeta(3) * Product_{p prime} (1 - 2/p^2 + 1/p^3 - 1/p^4 + 1/p^5) = 0.79482441214759383925... .

A377820 Powerful numbers that have a single odd exponent in their prime factorization.

Original entry on oeis.org

8, 27, 32, 72, 108, 125, 128, 200, 243, 288, 343, 392, 432, 500, 512, 648, 675, 800, 968, 972, 1125, 1152, 1323, 1331, 1352, 1372, 1568, 1728, 1800, 2000, 2048, 2187, 2197, 2312, 2592, 2700, 2888, 3087, 3125, 3200, 3267, 3528, 3872, 3888, 4232, 4500, 4563, 4608, 4913, 5000
Offset: 1

Views

Author

Amiram Eldar, Nov 09 2024

Keywords

Comments

First differs from A370786 at n = 124: A370786(124) = 27000 = 2^3 * 3^3 * 5*3 is not a term of this sequence.
Powerful numbers k such that A350389(k) is a prime power with an odd exponent (A246551).

Crossrefs

Intersection of A001694 and A229125.
Intersection of A000037 and A377821.

Programs

  • Mathematica
    With[{max = 5000}, Select[Union@ Flatten@Table[i^2 * j^3, {j, 1, max^(1/3)}, {i, 1, Sqrt[max/j^3]}], # > 1 && Count[FactorInteger[#][[;; , 2]], _?OddQ] == 1 &]]
  • PARI
    is(k) = if(k == 1, 0, my(e = factor(k)[, 2]); vecmin(e) > 1 && #select(x -> (x%2), e) == 1);

Formula

Sum_{n>=1} 1/a(n) = zeta(2) * P(3) = A013661 * A085541 = 0.28747301899596333866... .

A377991 Numbers k such that A351568(k) and A351569(k) are not coprime, where A351568 and A351569 are the sum of divisors of the largest unitary divisor of n that is a square, and of the largest unitary divisor of n that is an exponentially odd number, respectively.

Original entry on oeis.org

52, 98, 156, 164, 245, 260, 294, 332, 338, 364, 388, 392, 468, 490, 492, 539, 556, 572, 668, 722, 724, 735, 780, 820, 833, 845, 882, 884, 892, 927, 972, 976, 980, 988, 996, 1004, 1014, 1078, 1092, 1125, 1127, 1148, 1164, 1172, 1176, 1196, 1228, 1274, 1300, 1352, 1396, 1404, 1421, 1470, 1476, 1508, 1525, 1568, 1573
Offset: 1

Views

Author

Antti Karttunen, Nov 15 2024

Keywords

Examples

			A351568(52) = 7 and A351569(52) = 14, so they share a factor (7), and therefore 52 is included as a term.
		

Crossrefs

Positions k where A377990(k) is larger than A051027(k).
Subsequence of A336548.

Programs

  • PARI
    A350388(n) = { my(m=1, f=factor(n)); for(k=1,#f~,if(0==(f[k,2]%2), m *= (f[k,1]^f[k,2]))); (m); };
    A351568(n) = sigma(A350388(n));
    isA377991(n) = (1A351568(n), sigma(n)/A351568(n)));

Formula

{k such that gcd(A351568(n),A351569(n)) > 1}.
{k such that A377990(k) > A051027(k)}.

A380165 a(n) is the value of the Euler totient function when applied to the largest unitary divisor of n that is an exponentially odd number.

Original entry on oeis.org

1, 1, 2, 1, 4, 2, 6, 4, 1, 4, 10, 2, 12, 6, 8, 1, 16, 1, 18, 4, 12, 10, 22, 8, 1, 12, 18, 6, 28, 8, 30, 16, 20, 16, 24, 1, 36, 18, 24, 16, 40, 12, 42, 10, 4, 22, 46, 2, 1, 1, 32, 12, 52, 18, 40, 24, 36, 28, 58, 8, 60, 30, 6, 1, 48, 20, 66, 16, 44, 24, 70, 4, 72
Offset: 1

Views

Author

Amiram Eldar, Jan 14 2025

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[OddQ[e], (p-1)*p^(e-1), 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i, 2] % 2, (f[i, 1]-1)*f[i, 1]^(f[i, 2]-1), 1));}

Formula

a(n) = A000010(A350389(n)).
a(n) >= 1, with equality if and only if n is either a square (A000290) or twice and odd square (A077591 \ {1}).
a(n) <= A000010(n), with equality if and only if n is an exponentially odd number (A268335).
Multiplicative with a(p^e) = (p-1)*p^(e-1) if e is odd, and 1 otherwise.
Dirichlet g.f.: zeta(2*s-2) * zeta(2*s) * Product_{p prime} (1 - 1/p^s + 1/p^(s-1) - 1/p^(2*s-2) - 1/p^(3*s-1) + 1/p^(3*s)).
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = zeta(4) * Product_{p prime} (1 - 2/p^2 + 2/p^3 - 2/p^4 + 1/p^5) = 0.50115112192510092436... .

A385007 The largest unitary divisor of n that is a biquadratefree number (A046100).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 1, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 1, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 3, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 1, 65, 66, 67, 68, 69
Offset: 1

Views

Author

Amiram Eldar, Jun 15 2025

Keywords

Comments

First differs from A053165 at n = 32 = 2^5: a(32) = 1 while A053165(32) = 2.
First differs from A383764 at n = 32 = 2^5: a(32) = 1 while A383764(32) = 32.
Equivalently, a(n) is the least divisor d of n such that n/d is a 4-full number (A036967).

Crossrefs

The largest unitary divisor of n that is: A000265 (odd), A006519 (power of 2), A055231 (squarefree), A057521 (powerful), A065330 (5-rough), A065331 (3-smooth), A350388 (square), A350389 (exponentially odd), A360539 (cubefree), A360540 (cubefull), A366126 (cube), A367168 (exponentially 2^n), this sequence (biquadratefree).

Programs

  • Mathematica
    f[p_, e_] := If[e < 4, p^e, 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i=1, #f~, if(f[i, 2] < 4, f[i, 1]^f[i, 2], 1)); }

Formula

a(n) = 1 if and only if n is a 4-full number (A036967).
a(n) = n if and only if n is a biquadratefree number (A046100).
Multiplicative with a(p^e) = p^e if e <= 3, and 1 otherwise.
Dirichlet g.f.: zeta(s) * Product_{p prime} (1 + p^(1-s) - p^(-s) + p^(2-2*s) - p^(1-2*s) - p^(2-3*s) + p^(3-3*s) - p^(3-4*s) + p^(-4*s)).
Sum_{k=1..n} a(k) ~ c * zeta(2) * n^2 / 2, where c = Product_{p prime} (1 - 1/p^2 - 1/p^4 + 1/p^6 + 1/p^8 - 1/p^9) = 0.56331392082909224894... .

A374485 Lexicographically earliest infinite sequence such that a(i) = a(j) => A350388(i) = A350388(j) and A351569(i) = A351569(j), for all i, j >= 1.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 6, 11, 12, 13, 13, 14, 10, 15, 16, 17, 18, 19, 13, 20, 21, 22, 23, 24, 25, 26, 18, 27, 28, 29, 28, 30, 31, 20, 32, 33, 22, 34, 35, 36, 37, 26, 28, 38, 39, 40, 26, 41, 29, 42, 26, 42, 43, 33, 20, 44, 45, 34, 46, 47, 48, 49, 50, 51, 34, 49, 26, 52, 53, 54, 55, 56, 34, 57, 43, 58, 59, 60, 48, 61, 62, 63, 42, 64, 33, 65, 66, 44, 67, 49, 42, 68
Offset: 1

Views

Author

Antti Karttunen, Aug 06 2024

Keywords

Comments

Restricted growth sequence transform of the ordered pair [A350388(n), A351569(n)].
For all i, j >= 1: a(i) = a(j) => A000203(i) = A000203(j).

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A350388(n) = { my(m=1, f=factor(n)); for(k=1,#f~,if(0==(f[k,2]%2), m *= (f[k,1]^f[k,2]))); (m); };
    A350389(n) = { my(m=1, f=factor(n)); for(k=1,#f~,if(1==(f[k,2]%2), m *= (f[k,1]^f[k,2]))); (m); };
    A351569(n) = sigma(A350389(n));
    Aux374485(n) = [A350388(n), A351569(n)];
    v374485 = rgs_transform(vector(up_to, n, Aux374485(n)));
    A374485(n) = v374485[n];
Previous Showing 21-28 of 28 results.