cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-47 of 47 results.

A354905 First position of n in A354578, where A354578(k) is the number of integer compositions whose run-sums constitute the k-th composition in standard order (graded reverse-lexicographic, A066099).

Original entry on oeis.org

3, 0, 2, 8, 32, 68, 130, 290, 274, 580, 520, 1298, 2080, 1096, 2082, 4168, 2178, 4164, 4386, 35137, 8328, 8786, 10274, 8772, 16712, 20562, 8712, 16658, 33320, 41554, 33288, 82210, 34856, 66628, 33312, 66642, 34850, 69704, 140306, 133448, 69714, 74308, 133154
Offset: 0

Views

Author

Gus Wiseman, Jun 21 2022

Keywords

Comments

The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.
Every sequence can be uniquely split into a sequence of non-overlapping runs. For example, the runs of (2,2,1,1,1,3,2,2) are ((2,2),(1,1,1),(3),(2,2)), with sums (4,3,3,4).

Examples

			The terms and their corresponding compositions begin:
     3: (1,1)
     0: ()
     2: (2)
     8: (4)
    32: (6)
    68: (4,3)
   130: (6,2)
   290: (3,4,2)
   274: (4,3,2)
   580: (3,4,3)
   520: (6,4)
  1298: (2,4,3,2)
The inverse run-sum compositions for n = 2, 8, 32, 68, 130, 290:
  (2)   (4)     (6)       (43)     (62)       (342)
  (11)  (22)    (33)      (223)    (332)      (3411)
        (1111)  (222)     (4111)   (611)      (11142)
                (111111)  (11113)  (3311)     (32211)
                          (22111)  (22211)    (111411)
                                   (1111112)  (311112)
                                              (1112211)
		

Crossrefs

The standard compositions used here are A066099, run-sums A353847/A353932.
This is the position of the first appearance of n in A354578.
A011782 counts compositions.
A003242 counts anti-run compositions, ranked by A333489.
A005811 counts runs in binary expansion.
A353838 ranks partitions with all distinct run-sums, counted by A353837.
A353851 counts compositions with all equal run-sums, ranked by A353848.
A353852 ranks compositions with all distinct run-sums, counted by A353850.
A353853-A353859 pertain to composition run-sum trajectory.
A354904 lists positions of zeros in A354578, complement A354912.
A354908 ranks collapsible compositions, counted by A353860.

Programs

  • Mathematica
    nn=1000;
    stc[n_]:=Differences[Prepend[Join@@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    antirunQ[y_]:=Length[Split[y]]==Length[y];
    q=Table[Length[Select[Tuples[Divisors/@stc[n]],antirunQ]],{n,0,nn}];
    w=Last[Select[Table[Take[q+1,i],{i,nn}],Union[#]==Range[Max@@#]&]-1];
    Table[Position[w,k][[1,1]]-1,{k,0,Max@@w}]

A353844 Starting with the multiset of prime indices of n, repeatedly take the multiset of run-sums until you reach a squarefree number. This number is prime (or 1) iff n belongs to the sequence.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 11, 12, 13, 16, 17, 19, 23, 25, 27, 29, 31, 32, 37, 40, 41, 43, 47, 49, 53, 59, 61, 63, 64, 67, 71, 73, 79, 81, 83, 84, 89, 97, 101, 103, 107, 109, 112, 113, 121, 125, 127, 128, 131, 137, 139, 144, 149, 151, 157, 163, 167, 169, 173, 179
Offset: 1

Views

Author

Gus Wiseman, May 26 2022

Keywords

Comments

The run-sums transformation is described by Kimberling at A237685 and A237750.
The runs of a sequence are its maximal consecutive constant subsequences. For example, the runs of {1,1,1,2,2,3,4} are {1,1,1}, {2,2}, {3}, {4}, with sums {3,3,4,4}.
Note that the Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so this sequence lists Heinz numbers of partitions whose run-sum trajectory reaches an empty set or singleton.

Examples

			The terms together with their prime indices begin:
      1: {}            25: {3,3}           64: {1,1,1,1,1,1}
      2: {1}           27: {2,2,2}         67: {19}
      3: {2}           29: {10}            71: {20}
      4: {1,1}         31: {11}            73: {21}
      5: {3}           32: {1,1,1,1,1}     79: {22}
      7: {4}           37: {12}            81: {2,2,2,2}
      8: {1,1,1}       40: {1,1,1,3}       83: {23}
      9: {2,2}         41: {13}            84: {1,1,2,4}
     11: {5}           43: {14}            89: {24}
     12: {1,1,2}       47: {15}            97: {25}
     13: {6}           49: {4,4}          101: {26}
     16: {1,1,1,1}     53: {16}           103: {27}
     17: {7}           59: {17}           107: {28}
     19: {8}           61: {18}           109: {29}
     23: {9}           63: {2,2,4}        112: {1,1,1,1,4}
The trajectory 60 -> 45 -> 35 ends in a nonprime number 35, so 60 is not in the sequence.
The trajectory 84 -> 63 -> 49 -> 19 ends in a prime number 19, so 84 is in the sequence.
		

Crossrefs

This sequence is a subset of A300273, counted by A275870.
The version for compositions is A353857, counted by A353847.
A001222 counts prime factors, distinct A001221.
A056239 adds up prime indices, row sums of A112798 and A296150.
A124010 gives prime signature, sorted A118914.
A304442 counts partitions with all equal run-sums.
A353851 counts compositions with all equal run-sums, ranked by A353848.
A325268 counts partitions by omicron, rank statistic A304465.
A353832 represents the operation of taking run-sums of a partition.
A353833 ranks partitions with all equal run-sums, nonprime A353834.
A353835 counts distinct run-sums of prime indices, weak A353861.
A353838 ranks partitions with all distinct run-sums, counted by A353837.
A353840-A353846 pertain to partition run-sum trajectory.
A353853-A353859 pertain to composition run-sum trajectory.
A353866 ranks rucksack partitions, counted by A353864.

Programs

  • Mathematica
    ope[n_]:=Times@@Prime/@Cases[If[n==1,{},FactorInteger[n]],{p_,k_}:>PrimePi[p]*k];
    Select[Range[100],#==1||PrimeQ[NestWhile[ope,#,!SquareFreeQ[#]&]]&]

A353845 Number of integer partitions of n such that if you repeatedly take the multiset of run-sums (or condensation), you eventually reach an empty set or singleton.

Original entry on oeis.org

1, 1, 2, 2, 4, 2, 5, 2, 8, 3, 5, 2, 15, 2, 5, 4, 18, 2, 13, 2, 14, 4, 5, 2, 62, 3, 5, 5, 14, 2, 18, 2, 48, 4, 5, 4, 71, 2, 5, 4, 54, 2, 18, 2, 14, 10, 5, 2, 374, 3, 9, 4, 14, 2, 37, 4, 54, 4, 5, 2, 131
Offset: 0

Views

Author

Gus Wiseman, May 26 2022

Keywords

Comments

Every sequence can be uniquely split into a sequence of non-overlapping runs. For example, the runs of (2,2,1,1,1,3,2,2) are ((2,2),(1,1,1),(3),(2,2)), with sums (4,3,3,4).

Examples

			The a(1) = 1 through a(8) = 8 partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
       (11)  (111)  (22)    (11111)  (33)      (1111111)  (44)
                    (211)            (222)                (422)
                    (1111)           (3111)               (2222)
                                     (111111)             (4211)
                                                          (41111)
                                                          (221111)
                                                          (11111111)
For example, the partition (3,2,2,2,1,1,1) has trajectory: (1,1,1,2,2,2,3) -> (3,3,6) -> (6,6) -> (12), so is counted under a(12).
		

Crossrefs

Dominated by A018818 (partitions into divisors).
The version for compositions is A353858.
A275870 counts collapsible partitions, ranked by A300273.
A304442 counts partitions with all equal run-sums, ranked by A353833.
A325268 counts partitions by omicron, rank statistic A304465.
A353832 represents the operation of taking run-sums of a partition.
A353837 counts partitions with all distinct run-sums, ranked by A353838.
A353840-A353846 pertain to partition run-sum trajectory.
A353847-A353859 pertain to composition run-sum trajectory.
A353864 counts rucksack partitions, ranked by A353866.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], Length[NestWhile[Sort[Total/@Split[#]]&,#,!UnsameQ@@#&]]<=1&]],{n,0,30}]

A354581 Numbers k such that the k-th composition in standard order is rucksack, meaning every distinct partial run has a different sum.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 15, 16, 17, 18, 19, 20, 21, 22, 24, 25, 26, 28, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 42, 44, 45, 48, 49, 50, 51, 52, 53, 54, 56, 57, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 76, 77, 80, 81, 82, 84, 85, 86, 88
Offset: 0

Views

Author

Gus Wiseman, Jun 15 2022

Keywords

Comments

We define a partial run of a sequence to be any contiguous constant subsequence.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.
The term rucksack is short for run-knapsack.

Examples

			The terms together with their corresponding compositions begin:
   0: ()
   1: (1)
   2: (2)
   3: (1,1)
   4: (3)
   5: (2,1)
   6: (1,2)
   7: (1,1,1)
   8: (4)
   9: (3,1)
  10: (2,2)
  12: (1,3)
  13: (1,2,1)
  15: (1,1,1,1)
Missing are:
  11: (2,1,1)
  14: (1,1,2)
  23: (2,1,1,1)
  27: (1,2,1,1)
  29: (1,1,2,1)
  30: (1,1,1,2)
  39: (3,1,1,1)
  43: (2,2,1,1)
  46: (2,1,1,2)
		

Crossrefs

The version for binary indices is A000225.
Counting distinct sums of full runs gives A353849, partitions A353835.
For partitions we have A353866, counted by A353864, complement A354583.
These compositions are counted by A354580.
Counting distinct sums of partial runs gives A354907, partitions A353861.
A066099 lists all compositions in standard order.
A124767 counts runs in standard compositions.
A124771 counts distinct contiguous subsequences, non-contiguous A334299.
A238279 and A333755 count compositions by number of runs.
A351014 counts distinct runs in standard compositions, firsts A351015.
A353838 ranks partitions with all distinct run-sums, counted by A353837.
A353851 counts compositions with all equal run-sums, ranked by A353848.
A353852 ranks compositions with all distinct run-sums, counted by A353850.
A353853-A353859 pertain to composition run-sum trajectory.
A353932 lists run-sums of standard compositions, rows ranked by A353847.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Select[Range[0,100],UnsameQ@@Total/@Union@@Subsets/@Split[stc[#]]&]

A353843 Irregular triangle read by rows where T(n,k) is the number of integer partitions of n with partition run-sum trajectory ending in a partition of length k. All zeros removed.

Original entry on oeis.org

1, 1, 2, 2, 1, 4, 1, 2, 5, 5, 5, 1, 2, 12, 1, 8, 11, 3, 3, 19, 8, 5, 27, 9, 1, 2, 34, 19, 1, 15, 26, 34, 2, 2, 49, 45, 5, 5, 68, 48, 14, 4, 58, 98, 15, 1, 18, 76, 105, 31, 1, 2, 88, 159, 46, 2, 13, 98, 191, 79, 4, 2, 114, 261, 105, 8, 14, 148, 282, 164, 19
Offset: 0

Views

Author

Gus Wiseman, Jun 04 2022

Keywords

Comments

The partition run-sum trajectory is obtained by repeatedly taking the run-sums until a strict partition is reached. For example, the trajectory of y = (3,2,1,1,1) is (3,2,1,1,1) -> (3,3,2) -> (6,2), so y is counted under T(8,2).

Examples

			Triangle begins:
   1
   1
   2
   2  1
   4  1
   2  5
   5  5  1
   2 12  1
   8 11  3
   3 19  8
   5 27  9  1
   2 34 19  1
  15 26 34  2
   2 49 45  5
   5 68 48 14
   4 58 98 15  1
For example, row n = 8 counts the following partitions:
  (8)         (53)       (431)
  (44)        (62)       (521)
  (422)       (71)       (3221)
  (2222)      (332)
  (4211)      (611)
  (41111)     (3311)
  (221111)    (5111)
  (11111111)  (22211)
              (32111)
              (311111)
              (2111111)
		

Crossrefs

Row sums are A000041.
Row-lengths are A003056.
The last part of the same trajectory is A353842.
Column k = 1 is A353845, compositions A353858.
The length of the trajectory is A353846.
The version for compositions is A353856.
A275870 counts collapsible partitions, ranked by A300273.
A304442 counts partitions with constant run-sums, ranked by A353833/A353834.
A325268 counts partitions by omicron, rank statistic A304465.
A353837 counts partitions with all distinct run-sums, ranked by A353838.
A353840-A353846 pertain to partition run-sum trajectory.
A353847 represents the run-sums of a composition, partitions A353832.
A353864 counts rucksack partitions, ranked by A353866.
A353865 counts perfect rucksack partitions, ranked by A353867.
A353932 lists run-sums of standard compositions.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], Length[FixedPoint[Sort[Total/@Split[#]]&,#]]==k&]],{n,0,15},{k,0,n}]

A354583 Heinz numbers of non-rucksack partitions: not every prime-power divisor has a different sum of prime indices.

Original entry on oeis.org

12, 24, 36, 40, 48, 60, 63, 72, 80, 84, 96, 108, 112, 120, 126, 132, 144, 156, 160, 168, 180, 189, 192, 200, 204, 216, 224, 228, 240, 252, 264, 276, 280, 288, 300, 312, 315, 320, 324, 325, 336, 348, 351, 352, 360, 372, 378, 384, 396, 400, 408, 420, 432, 440
Offset: 1

Views

Author

Gus Wiseman, Jun 15 2022

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
The term rucksack is short for run-knapsack.

Examples

			The terms together with their prime indices begin:
   12: {1,1,2}
   24: {1,1,1,2}
   36: {1,1,2,2}
   40: {1,1,1,3}
   48: {1,1,1,1,2}
   60: {1,1,2,3}
   63: {2,2,4}
   72: {1,1,1,2,2}
   80: {1,1,1,1,3}
   84: {1,1,2,4}
   96: {1,1,1,1,1,2}
  108: {1,1,2,2,2}
  112: {1,1,1,1,4}
  120: {1,1,1,2,3}
  126: {1,2,2,4}
  132: {1,1,2,5}
  144: {1,1,1,1,2,2}
  156: {1,1,2,6}
  160: {1,1,1,1,1,3}
  168: {1,1,1,2,4}
For example, {2,2,2,3,3} does not have distinct run-sums because 2+2+2 = 3+3, so 675 is in the sequence.
		

Crossrefs

Knapsack partitions are counted by A108917, ranked by A299702.
Non-knapsack partitions are ranked by A299729.
The non-partial version is A353839, complement A353838 (counted by A353837).
The complement is A353866, counted by A353864.
The complete complement is A353867, counted by A353865.
The complement for compositions is counted by A354580.
A001222 counts prime factors, distinct A001221.
A056239 adds up prime indices, row sums of A112798 and A296150.
A073093 counts prime-power divisors.
A300273 ranks collapsible partitions, counted by A275870.
A304442 counts partitions with all equal run-sums, ranked by A353833.
A333223 ranks knapsack compositions, counted by A325676.
A353852 ranks compositions with all distinct run-sums, counted by A353850.
A353861 counts distinct partial run-sums of prime indices.
A354584 lists run-sums of prime indices, rows ranked by A353832.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],!UnsameQ@@Total/@primeMS/@Select[Divisors[#],PrimePowerQ]&]

A383088 Numbers whose multiset of prime indices does not have all equal run-sums.

Original entry on oeis.org

6, 10, 14, 15, 18, 20, 21, 22, 24, 26, 28, 30, 33, 34, 35, 36, 38, 39, 42, 44, 45, 46, 48, 50, 51, 52, 54, 55, 56, 57, 58, 60, 62, 65, 66, 68, 69, 70, 72, 74, 75, 76, 77, 78, 80, 82, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 95, 96, 98, 99, 100, 102, 104, 105
Offset: 1

Views

Author

Gus Wiseman, Apr 17 2025

Keywords

Comments

First differs from A381871 in having 36.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798, sum A056239.

Examples

			The prime indices of 36 are {1,1,2,2}, with run-sums (2,4), so 36 is in the sequence, even though we have the multiset partition {{1,1},{2},{2}} with equal sums.
The terms together with their prime indices begin:
    6: {1,2}
   10: {1,3}
   14: {1,4}
   15: {2,3}
   18: {1,2,2}
   20: {1,1,3}
   21: {2,4}
   22: {1,5}
   24: {1,1,1,2}
   26: {1,6}
   28: {1,1,4}
   30: {1,2,3}
   33: {2,5}
   34: {1,7}
   35: {3,4}
   36: {1,1,2,2}
   38: {1,8}
   39: {2,6}
   42: {1,2,4}
   44: {1,1,5}
   45: {2,2,3}
   46: {1,9}
		

Crossrefs

For run-lengths instead of sums we have A059404, distinct A130092.
The complement is A353833, counted by A304442.
For distinct instead of equal run-sums we have A353839.
Partitions of this type are counted by A382076.
Counting and ranking partitions by run-lengths and run-sums:
- constant: A047966 (ranks A072774), sums A304442 (ranks A353833)
- distinct: A098859 (ranks A130091), sums A353837 (ranks A353838)
- weakly decreasing: A100882 (ranks A242031), sums A304405 (ranks A357875)
- weakly increasing: A100883 (ranks A304678), sums A304406 (ranks A357861)
- strictly decreasing: A100881 (ranks A304686), sums A304428 (ranks A357862)
- strictly increasing: A100471 (ranks A334965), sums A304430 (ranks A357864)
A001222 counts prime factors, distinct A001221.
A056239 adds up prime indices, row sums of A112798.
A326534 ranks multiset partitions with a common sum, counted by A321455, normal A326518.
A353851 counts compositions with a common run-sum, ranks A353848.
A353862 gives the greatest run-sum of prime indices, least A353931.
A382877 counts permutations of prime indices with equal run-sums, zeros A383100.
A383098 counts partitions with a permutation having all equal run-sums, ranks A383110.

Programs

  • Mathematica
    Select[Range[100], !SameQ@@Cases[FactorInteger[#],{p_,k_}:>PrimePi[p]*k]&]
Previous Showing 41-47 of 47 results.