cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 29 results. Next

A354584 Irregular triangle read by rows where row k lists the run-sums of the multiset (weakly increasing sequence) of prime indices of n.

Original entry on oeis.org

1, 2, 2, 3, 1, 2, 4, 3, 4, 1, 3, 5, 2, 2, 6, 1, 4, 2, 3, 4, 7, 1, 4, 8, 2, 3, 2, 4, 1, 5, 9, 3, 2, 6, 1, 6, 6, 2, 4, 10, 1, 2, 3, 11, 5, 2, 5, 1, 7, 3, 4, 2, 4, 12, 1, 8, 2, 6, 3, 3, 13, 1, 2, 4, 14, 2, 5, 4, 3, 1, 9, 15, 4, 2, 8, 1, 6, 2, 7, 2, 6, 16
Offset: 1

Views

Author

Gus Wiseman, Jun 17 2022

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
Every sequence can be uniquely split into a sequence of non-overlapping runs. For example, the runs of (2,2,1,1,1,3,2,2) are ((2,2),(1,1,1),(3),(2,2)), with sums (4,3,3,4).

Examples

			Triangle begins:
  .
  1
  2
  2
  3
  1 2
  4
  3
  4
  1 3
  5
  2 2
  6
  1 4
  2 3
For example, the prime indices of 630 are {1,2,2,3,4}, so row 630 is (1,4,3,4).
		

Crossrefs

Positions of first appearances are A308495 plus 1.
The version for compositions is A353932, ranked by A353847.
Classes:
- singleton rows: A000961
- constant rows: A353833, nonprime A353834, counted by A304442
- strict rows: A353838, counted by A353837, complement A353839
Statistics:
- row lengths: A001221
- row sums: A056239
- row products: A304117
- row ranks (as partitions): A353832
- row image sizes: A353835
- row maxima: A353862
- row minima: A353931
A001222 counts prime factors with multiplicity.
A112798 and A296150 list partitions by rank.
A124010 gives prime signature, sorted A118914.
A300273 ranks collapsible partitions, counted by A275870.
A353840-A353846 pertain to partition run-sum trajectory.
A353861 counts distinct sums of partial runs of prime indices.
A353866 ranks rucksack partitions, counted by A353864.

Programs

  • Mathematica
    Table[Cases[If[n==1,{},FactorInteger[n]],{p_,k_}:>PrimePi[p]*k],{n,30}]

A353866 Heinz numbers of rucksack partitions. Every prime-power divisor has a different sum of prime indices.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75
Offset: 1

Views

Author

Gus Wiseman, Jun 06 2022

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
In a knapsack partition (A108917, ranked by A299702), every submultiset has a different sum, so these are run-knapsack partitions or rucksack partitions for short.

Examples

			The terms together with their prime indices begin:
    1: {}
    2: {1}
    3: {2}
    4: {1,1}
    5: {3}
    6: {1,2}
    7: {4}
    8: {1,1,1}
    9: {2,2}
   10: {1,3}
   11: {5}
   13: {6}
   14: {1,4}
   15: {2,3}
   16: {1,1,1,1}
The sequence contains 18 because its prime-power divisors {1,2,3,9} have prime indices {}, {1}, {2}, {2,2} with distinct sums {0,1,2,4}. On the other hand, 12 is not in the sequence because {2} and {1,1} have the same sum.
		

Crossrefs

Knapsack partitions are counted by A108917, ranked by A299702.
The strong case is A353838, counted by A353837, complement A353839.
These partitions are counted by A353864.
The complete case is A353867, counted by A353865.
The complement is A354583.
A000041 counts partitions, strict A000009.
A001222 counts prime factors, distinct A001221.
A056239 adds up prime indices, row sums of A112798 and A296150.
A073093 counts prime-power divisors.
A124010 gives prime signature, sorted A118914.
A300273 ranks collapsible partitions, counted by A275870.
A353832 represents the operation of taking run-sums of a partition.
A353836 counts partitions by number of distinct run-sums.
A353852 ranks compositions with all distinct run-sums, counted by A353850.
A353863 counts partitions whose weak run-sums cover an initial interval.

Programs

  • Mathematica
    msubs[s_]:=Join@@@Tuples[Table[Take[t,i],{t,Split[s]},{i,0,Length[t]}]];
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],UnsameQ@@Total/@Select[msubs[primeMS[#]],SameQ@@#&]&]

A353861 Number of distinct weak run-sums of the prime indices of n.

Original entry on oeis.org

1, 2, 2, 3, 2, 3, 2, 4, 3, 3, 2, 3, 2, 3, 3, 5, 2, 4, 2, 4, 3, 3, 2, 4, 3, 3, 4, 4, 2, 4, 2, 6, 3, 3, 3, 4, 2, 3, 3, 4, 2, 4, 2, 4, 4, 3, 2, 5, 3, 4, 3, 4, 2, 5, 3, 5, 3, 3, 2, 4, 2, 3, 3, 7, 3, 4, 2, 4, 3, 4, 2, 5, 2, 3, 4, 4, 3, 4, 2, 5, 5, 3, 2, 4, 3, 3, 3, 5, 2, 5, 3, 4, 3, 3, 3, 6, 2, 4, 4, 5, 2, 4, 2, 5, 4, 3, 2, 5
Offset: 1

Views

Author

Gus Wiseman, May 23 2022

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
A weak run-sum of a sequence is the sum of any consecutive constant subsequence.

Examples

			The prime indices of 72 are {1,1,1,2,2}, with weak runs {}, {1}, {1,1}, {1,1,1}, {2}, {2,2}, which have sums 0, 1, 2, 3, 2, 4, of which 5 are distinct, so a(72) = 5.
		

Crossrefs

Positions of 2's are A000040.
Positions of first appearances are A000079.
The strong version is A353835, firsts A002110.
Partitions with distinct run-sums are ranked by A353838, counted by A353837.
The strong version for compositions is A353849.
The greatest run-sum is given by A353862, least A353931.
A001222 counts prime factors, distinct A001221.
A005811 counts runs in binary expansion.
A056239 adds up prime indices, row sums of A112798 and A296150.
A124010 gives prime signature, sorted A118914.
A165413 counts distinct run-lengths in binary expansion, sums A353929.
A300273 ranks collapsible partitions, counted by A275870.
A353832 represents taking run-sums of a partition, compositions A353847.
A353833 ranks partitions with all equal run-sums, counted by A304442.
A353840-A353846 pertain to partition run-sum trajectory.
A353852 ranks compositions with all distinct run-sums, counted by A353850.

Programs

  • Mathematica
    Table[Length[Union@@Cases[FactorInteger[n],{p_,k_}:>Range[0,k]*PrimePi[p]]],{n,100}]
  • PARI
    pis_to_runs(n) = { my(runs=List([]), f=factor(n)); for(i=1,#f~,while(f[i,2], listput(runs,primepi(f[i,1])); f[i,2]--)); (runs); };
    A353861(n) = if(1==n,n,my(pruns = pis_to_runs(n), runsum = 0, runsums = List([])); for(i=1,#pruns, listput(runsums, runsum); if((i>1) && pruns[i] == pruns[i-1], runsum += pruns[i], runsum = pruns[i])); listput(runsums, runsum); #Set(runsums)); \\ Antti Karttunen, Jan 20 2025

Extensions

Data section extended to a(108) by Antti Karttunen, Jan 20 2025

A353835 Number of distinct run-sums of the prime indices of n.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 3, 1, 1, 2, 2, 2, 2, 1, 2, 2, 1, 1, 3, 1, 2, 2, 2, 1, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 2, 1, 2, 1, 1, 2, 3, 1, 2, 2, 3, 1, 2, 1, 2, 2, 2, 2, 3, 1, 2, 1, 2, 1, 2, 2, 2, 2, 2, 1, 3, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 1, 3, 1, 2, 3
Offset: 1

Views

Author

Gus Wiseman, May 23 2022

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The sequence of runs of a sequence consists of its maximal consecutive constant subsequences when read left-to-right. For example, the runs of (2,2,1,1,1,3,2,2) are (2,2), (1,1,1), (3), (2,2), with sums (4,3,3,4).

Examples

			The prime indices of 3780 are {1,1,2,2,2,3,4}, with distinct run-sums {2,3,4,6}, so a(3780) = 4.
The prime indices of 8820 are {1,1,2,2,3,4,4}, with distinct run-sums {2,3,4,8}, so a(8820) = 4.
The prime indices of 13860 are {1,1,2,2,3,4,5}, with distinct run-sums {2,3,4,5}, so a(13860) = 4.
The prime indices of 92400 are {1,1,1,1,2,3,3,4,5}, with distinct run-sums {2,4,5,6}, so a(92400) = 4.
		

Crossrefs

Positions of first appearances are A002110.
A version for binary expansion is A165413.
Positions of 0's and 1's are A353833, nonprime A353834, counted by A304442.
The case of all distinct run-sums is ranked by A353838, counted by A353837.
The version for compositions is A353849.
The weak version is A353861.
A001222 counts prime factors, distinct A001221.
A005811 counts runs in binary expansion.
A056239 adds up prime indices, row sums of A112798 and A296150.
A124010 gives prime signature, sorted A118914.
A300273 ranks collapsible partitions, counted by A275870.
A351014 counts distinct runs in standard compositions.
A353832 represents the operation of taking run-sums of a partition.
A353840-A353846 pertain to partition run-sum trajectory.
A353862 gives greatest run-sum of prime indices, least A353931.
A353866 ranks rucksack partitions, counted by A353864.

Programs

  • Mathematica
    Table[Length[Union[Cases[If[n==1,{},FactorInteger[n]],{p_,k_}:>PrimePi[p]*k]]],{n,100}]
  • PARI
    pis_to_runs(n) = { my(runs=List([]), f=factor(n)); for(i=1,#f~,while(f[i,2], listput(runs,primepi(f[i,1])); f[i,2]--)); (runs); };
    A353832(n) = if(1==n,n,my(pruns = pis_to_runs(n), m=1, runsum=pruns[1]); for(i=2,#pruns,if(pruns[i] == pruns[i-1], runsum += pruns[i], m *= prime(runsum); runsum = pruns[i])); (m*prime(runsum)));
    A353835(n) = omega(A353832(n)); \\ Antti Karttunen, Jan 20 2025

Formula

a(n) = A001221(A353832(n)). [From formula section of A353832] - Antti Karttunen, Jan 20 2025

Extensions

Data section extended to a(105) by Antti Karttunen, Jan 20 2025

A353834 Nonprime numbers whose prime indices have all equal run-sums.

Original entry on oeis.org

1, 4, 8, 9, 12, 16, 25, 27, 32, 40, 49, 63, 64, 81, 112, 121, 125, 128, 144, 169, 243, 256, 289, 325, 343, 351, 352, 361, 512, 529, 625, 675, 729, 832, 841, 931, 961, 1008, 1024, 1331, 1369, 1539, 1600, 1681, 1728, 1849, 2048, 2176, 2187, 2197, 2209, 2401
Offset: 1

Views

Author

Gus Wiseman, May 26 2022

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The sequence of runs of a sequence consists of its maximal consecutive constant subsequences when read left-to-right. For example, the runs of (2,2,1,1,1,3,2,2) are (2,2), (1,1,1), (3), (2,2), with sums (4,3,3,4).

Examples

			The terms together with their prime indices begin:
     1: {}
     4: {1,1}
     8: {1,1,1}
     9: {2,2}
    12: {1,1,2}
    16: {1,1,1,1}
    25: {3,3}
    27: {2,2,2}
    32: {1,1,1,1,1}
    40: {1,1,1,3}
    49: {4,4}
    63: {2,2,4}
    64: {1,1,1,1,1,1}
    81: {2,2,2,2}
   112: {1,1,1,1,4}
   121: {5,5}
   125: {3,3,3}
   128: {1,1,1,1,1,1,1}
For example, 675 is in the sequence because its prime indices {2,2,2,3,3} have run-sums (6,6).
		

Crossrefs

For equal run-lengths we have A072774\A000040, counted by A047966(n)-1.
These partitions are counted by A304442(n) - 1.
These are the nonprime positions of prime powers in A353832.
Including the primes gives A353833.
For distinct run-sums we have A353838\A000040, counted by A353837(n)-1.
For compositions we have A353848\A000079, counted by A353851(n)-1.
A001222 counts prime factors, distinct A001221.
A005811 counts runs in binary expansion, distinct run-lengths A165413.
A056239 adds up prime indices, row sums of A112798 and A296150.
A124010 gives prime signature, sorted A118914.
A300273 ranks collapsible partitions, counted by A275870.
A353835 counts distinct run-sums of prime indices, weak A353861.
A353840-A353846 pertain to partition run-sum trajectory.
A353862 gives greatest run-sum of prime indices, least A353931.
A353866 ranks rucksack partitions, counted by A353864.

Programs

  • Mathematica
    Select[Range[100],!PrimeQ[#]&&SameQ@@Cases[FactorInteger[#],{p_,k_}:>PrimePi[p]*k]&]
  • Python
    from itertools import count, islice
    from sympy import factorint, primepi
    def A353848_gen(startvalue=1): # generator of terms >= startvalue
        return filter(lambda n: n == 1 or (sum((f:=factorint(n)).values()) > 1 and len(set(primepi(p)*e for p, e in f.items())) <= 1), count(max(startvalue,1)))
    A353848_list = list(islice(A353848_gen(),30)) # Chai Wah Wu, May 27 2022

A353867 Heinz numbers of integer partitions where every partial run (consecutive constant subsequence) has a different sum, and these sums include every integer from 0 to the greatest part.

Original entry on oeis.org

1, 2, 4, 6, 8, 16, 20, 30, 32, 56, 64, 90, 128, 140, 176, 210, 256, 416, 512, 616, 990, 1024, 1088, 1540, 2048, 2288, 2310, 2432, 2970, 4096, 4950, 5888, 7072, 7700, 8008, 8192, 11550, 12870, 14848, 16384, 20020, 20672, 30030, 31744, 32768, 38896, 50490, 55936
Offset: 1

Views

Author

Gus Wiseman, Jun 07 2022

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
Related concepts:
- A partition whose submultiset sums cover an initial interval is said to be complete (A126796, ranked by A325781).
- In a knapsack partition (A108917, ranked by A299702), every submultiset has a different sum.
- A complete partition that is also knapsack is said to be perfect (A002033, ranked by A325780).
- A partition whose partial runs have all different sums is said to be rucksack (A353864, ranked by A353866, complement A354583).

Examples

			The terms together with their prime indices begin:
    1: {}
    2: {1}
    4: {1,1}
    6: {1,2}
    8: {1,1,1}
   16: {1,1,1,1}
   20: {1,1,3}
   30: {1,2,3}
   32: {1,1,1,1,1}
   56: {1,1,1,4}
   64: {1,1,1,1,1,1}
   90: {1,2,2,3}
  128: {1,1,1,1,1,1,1}
  140: {1,1,3,4}
  176: {1,1,1,1,5}
  210: {1,2,3,4}
  256: {1,1,1,1,1,1,1,1}
		

Crossrefs

Knapsack partitions are counted by A108917, ranked by A299702.
Complete partitions are counted by A126796, ranked by A325781.
These partitions are counted by A353865.
This is a special case of A353866, counted by A353864, complement A354583.
A001222 counts prime factors, distinct A001221.
A056239 adds up prime indices, row sums of A112798 and A296150.
A073093 counts prime-power divisors.
A124010 gives prime signature, sorted A118914.
A300273 ranks collapsible partitions, counted by A275870.
A353832 represents the operation of taking run-sums of a partition.
A353833 ranks partitions with all equal run-sums, nonprime A353834.
A353836 counts partitions by number of distinct run-sums.
A353852 ranks compositions with all distinct run-sums, counted by A353850.
A353863 counts partitions whose weak run-sums cover an initial interval.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    norqQ[m_]:=Sort[m]==Range[0,Max[m]];
    msubs[s_]:=Join@@@Tuples[Table[Take[t,i],{t,Split[s]},{i,0,Length[t]}]];
    Select[Range[1000],norqQ[Total/@Select[msubs[primeMS[#]],SameQ@@#&]]&]

A353865 Number of complete rucksack partitions of n. Partitions whose weak run-sums are distinct and cover an initial interval of nonnegative integers.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 2, 2, 2, 3, 2, 2, 2, 3, 2, 5, 2, 3, 4, 3, 2, 4, 3, 3, 4, 4, 3, 4, 3, 4, 5, 5, 4, 6, 4, 6, 5, 4, 5, 6, 5, 6, 7, 6, 5, 9, 6, 6, 7, 6, 8, 9, 6, 6, 8, 9, 7, 9, 9, 7, 10, 9, 8, 13, 7, 10, 11, 8, 9, 10, 11, 12, 9, 11, 9, 15, 12, 12, 19, 13, 16, 16
Offset: 0

Views

Author

Gus Wiseman, Jun 04 2022

Keywords

Comments

Every sequence can be uniquely split into a sequence of non-overlapping runs. For example, the runs of (2,2,1,1,1,3,2,2) are ((2,2),(1,1,1),(3),(2,2)), with sums (4,3,3,4). A weak run-sum is the sum of any consecutive constant subsequence.
Do all positive integers appear only finitely many times in this sequence?

Examples

			The a(n) compositions for n = 1, 3, 9, 15, 18:
  (1)  (21)   (4311)       (54321)            (543321)
       (111)  (51111)      (532221)           (654111)
              (111111111)  (651111)           (7611111)
                           (81111111)         (111111111111111111)
                           (111111111111111)
For example, the weak runs of y = {7,5,4,4,3,3,3,1,1} are {}, {1}, {1,1}, {3}, {4}, {5}, {3,3}, {7}, {4,4}, {3,3,3}, with sums 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, which are all distinct and cover an initial interval, so y is counted under a(31).
		

Crossrefs

Perfect partitions are counted by A002033, ranked by A325780.
Knapsack partitions are counted by A108917, ranked by A299702.
This is the complete case of A353864, ranked by A353866.
These partitions are ranked by A353867.
A000041 counts partitions, strict A000009.
A275870 counts collapsible partitions, ranked by A300273.
A304442 counts partitions with all equal run-sums, ranked by A353833.
A353832 represents the operation of taking run-sums of a partition.
A353836 counts partitions by number of distinct run-sums.
A353837 counts partitions with distinct run-sums, ranked by A353838.
A353840-A353846 pertain to partition run-sum trajectory.
A353850 counts compositions with all distinct run-sums, ranked by A353852.
A353863 counts partitions whose weak run-sums cover an initial interval.

Programs

  • Mathematica
    norqQ[m_]:=Sort[m]==Range[0,Max[m]];
    msubs[s_]:=Join@@@Tuples[Table[Take[t,i],{t,Split[s]},{i,0,Length[t]}]];
    Table[Length[Select[IntegerPartitions[n],norqQ[Total/@Select[msubs[#],SameQ@@#&]]&]],{n,0,15}]
  • PARI
    a(n) = my(c=0, s, v); if(n, forpart(p=n, if(p[1]==1, v=List([s=1]); for(i=2, #p, if(p[i]==p[i-1], listput(v, s+=p[i]), listput(v, s=p[i]))); s=#v; listsort(v, 1); if(s==#v&&s==v[s], c++))); c, 1); \\ Jinyuan Wang, Feb 21 2025

Extensions

More terms from Jinyuan Wang, Feb 21 2025

A353931 Least run-sum of the prime indices of n.

Original entry on oeis.org

0, 1, 2, 2, 3, 1, 4, 3, 4, 1, 5, 2, 6, 1, 2, 4, 7, 1, 8, 2, 2, 1, 9, 2, 6, 1, 6, 2, 10, 1, 11, 5, 2, 1, 3, 2, 12, 1, 2, 3, 13, 1, 14, 2, 3, 1, 15, 2, 8, 1, 2, 2, 16, 1, 3, 3, 2, 1, 17, 2, 18, 1, 4, 6, 3, 1, 19, 2, 2, 1, 20, 3, 21, 1, 2, 2, 4, 1, 22, 3, 8, 1
Offset: 1

Views

Author

Gus Wiseman, Jun 07 2022

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
Every sequence can be uniquely split into a sequence of non-overlapping runs. For example, the runs of (2,2,1,1,1,3,2,2) are ((2,2),(1,1,1),(3),(2,2)), with sums (4,3,3,4).

Examples

			The prime indices of 72 are {1,1,1,2,2}, with run-sums {3,4}, so a(72) = 3.
		

Crossrefs

Positions of first appearances are A008578.
For run-lengths instead of run-sums we have A051904, greatest A051903.
For run-sums and binary expansion we have A144790, greatest A038374.
For run-lengths and binary expansion we have A175597, greatest A043276.
Distinct run-sums are counted by A353835, weak A353861.
The greatest run-sum is given by A353862.
A001222 counts prime factors, distinct A001221.
A005811 counts runs in binary expansion.
A056239 adds up prime indices, row sums of A112798 and A296150.
A124010 gives prime signature, sorted A118914.
A304442 counts partitions with all equal run-sums, compositions A353851.
A353832 represents the operation of taking run-sums of a partition.
A353833 ranks partitions with all equal run sums, nonprime A353834.
A353838 ranks partitions with all distinct run-sums, counted by A353837.
A353840-A353846 pertain to partition run-sum trajectory.

Programs

  • Mathematica
    Table[Min@@Cases[FactorInteger[n],{p_,k_}:>PrimePi[p]*k],{n,100}]

A383097 Number of integer partitions of n having more than one permutation with all equal run-sums.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 1, 0, 3, 0, 1, 0, 7, 0, 1, 0, 9, 0, 7, 0, 12, 0, 1, 0, 38, 0, 1, 1, 18, 0, 38, 0, 32, 0, 1, 0, 90, 0, 1, 0, 71, 0, 78, 0, 33, 10, 1, 0, 228, 0, 31, 0, 42, 0, 156, 0, 123, 0, 1, 0, 447, 0, 1, 16, 146, 0, 222, 0, 63, 0, 102, 0, 811, 0, 1, 29, 75, 0, 334, 0
Offset: 0

Views

Author

Gus Wiseman, Apr 17 2025

Keywords

Examples

			The a(27) = 1 partition is: (9,3,3,3,1,1,1,1,1,1,1,1,1).
The a(4) = 1 through a(16) = 9 partitions (empty columns not shown):
  (211)  (3111)  (422)     (511111)  (633)        (71111111)  (844)
                 (41111)             (6222)                   (82222)
                 (221111)            (33222)                  (442222)
                                     (4221111)                (44221111)
                                     (6111111)                (422221111)
                                     (33111111)               (811111111)
                                     (222111111)              (4411111111)
                                                              (42211111111)
                                                              (222211111111)
		

Crossrefs

These partitions are ranked by A383015, positions of terms > 1 in A382877.
For run-lengths instead of sums we have A383090, ranks A383089, unique A383094.
The complement is A383095 + A383096, ranks A383099 \/ A383100.
For any positive number of permutations we have A383098, ranks A383110.
Counting and ranking partitions by run-lengths and run-sums:
- constant: A047966 (ranks A072774), sums A304442 (ranks A353833)
- distinct: A098859 (ranks A130091), sums A353837 (ranks A353838)
- weakly decreasing: A100882 (ranks A242031), sums A304405 (ranks A357875)
- weakly increasing: A100883 (ranks A304678), sums A304406 (ranks A357861)
- strictly decreasing: A100881 (ranks A304686), sums A304428 (ranks A357862)
- strictly increasing: A100471 (ranks A334965), sums A304430 (ranks A357864)
A275870 counts collapsible partitions, ranks A300273.
A326534 ranks multiset partitions with a common sum, counted by A321455, normal A326518.
A353851 counts compositions with all equal run-sums, ranks A353848.
A382876 counts permutations of prime indices with distinct run-sums, zeros A381636.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Length[Select[Permutations[#],SameQ@@Total/@Split[#]&]]>1&]],{n,0,15}]

Extensions

More terms from Bert Dobbelaere, Apr 26 2025

A353862 Greatest run-sum of the prime indices of n.

Original entry on oeis.org

0, 1, 2, 2, 3, 2, 4, 3, 4, 3, 5, 2, 6, 4, 3, 4, 7, 4, 8, 3, 4, 5, 9, 3, 6, 6, 6, 4, 10, 3, 11, 5, 5, 7, 4, 4, 12, 8, 6, 3, 13, 4, 14, 5, 4, 9, 15, 4, 8, 6, 7, 6, 16, 6, 5, 4, 8, 10, 17, 3, 18, 11, 4, 6, 6, 5, 19, 7, 9, 4, 20, 4, 21, 12, 6, 8, 5, 6, 22, 4, 8
Offset: 1

Views

Author

Gus Wiseman, May 23 2022

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
A run-sum of a sequence is the sum of any maximal consecutive constant subsequence.

Examples

			The prime indices of 72 are {1,1,1,2,2}, with run-sums {3,4}, so a(72) = 4.
		

Crossrefs

Positions of first appearances are A008578.
For binary expansion we have A038374, least A144790.
For run-lengths instead of run-sums we have A051903.
Distinct run-sums are counted by A353835, weak A353861.
The least run-sum is given by A353931.
A001222 counts prime factors, distinct A001221.
A005811 counts runs in binary expansion.
A056239 adds up prime indices, row sums of A112798 and A296150.
A124010 gives prime signature, sorted A118914.
A300273 ranks collapsible partitions, counted by A275870.
A304442 counts partitions with all equal run-sums, compositions A353851.
A353832 represents the operation of taking run-sums of a partition.
A353833 ranks partitions with all equal run sums, nonprime A353834.
A353838 ranks partitions with all distinct run-sums, counted by A353837.
A353840-A353846 pertain to partition run-sum trajectory.

Programs

  • Mathematica
    Table[Max@@Cases[FactorInteger[n],{p_,k_}:>PrimePi[p]*k],{n,100}]
Previous Showing 11-20 of 29 results. Next