cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 44 results. Next

A383097 Number of integer partitions of n having more than one permutation with all equal run-sums.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 1, 0, 3, 0, 1, 0, 7, 0, 1, 0, 9, 0, 7, 0, 12, 0, 1, 0, 38, 0, 1, 1, 18, 0, 38, 0, 32, 0, 1, 0, 90, 0, 1, 0, 71, 0, 78, 0, 33, 10, 1, 0, 228, 0, 31, 0, 42, 0, 156, 0, 123, 0, 1, 0, 447, 0, 1, 16, 146, 0, 222, 0, 63, 0, 102, 0, 811, 0, 1, 29, 75, 0, 334, 0
Offset: 0

Views

Author

Gus Wiseman, Apr 17 2025

Keywords

Examples

			The a(27) = 1 partition is: (9,3,3,3,1,1,1,1,1,1,1,1,1).
The a(4) = 1 through a(16) = 9 partitions (empty columns not shown):
  (211)  (3111)  (422)     (511111)  (633)        (71111111)  (844)
                 (41111)             (6222)                   (82222)
                 (221111)            (33222)                  (442222)
                                     (4221111)                (44221111)
                                     (6111111)                (422221111)
                                     (33111111)               (811111111)
                                     (222111111)              (4411111111)
                                                              (42211111111)
                                                              (222211111111)
		

Crossrefs

These partitions are ranked by A383015, positions of terms > 1 in A382877.
For run-lengths instead of sums we have A383090, ranks A383089, unique A383094.
The complement is A383095 + A383096, ranks A383099 \/ A383100.
For any positive number of permutations we have A383098, ranks A383110.
Counting and ranking partitions by run-lengths and run-sums:
- constant: A047966 (ranks A072774), sums A304442 (ranks A353833)
- distinct: A098859 (ranks A130091), sums A353837 (ranks A353838)
- weakly decreasing: A100882 (ranks A242031), sums A304405 (ranks A357875)
- weakly increasing: A100883 (ranks A304678), sums A304406 (ranks A357861)
- strictly decreasing: A100881 (ranks A304686), sums A304428 (ranks A357862)
- strictly increasing: A100471 (ranks A334965), sums A304430 (ranks A357864)
A275870 counts collapsible partitions, ranks A300273.
A326534 ranks multiset partitions with a common sum, counted by A321455, normal A326518.
A353851 counts compositions with all equal run-sums, ranks A353848.
A382876 counts permutations of prime indices with distinct run-sums, zeros A381636.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Length[Select[Permutations[#],SameQ@@Total/@Split[#]&]]>1&]],{n,0,15}]

Extensions

More terms from Bert Dobbelaere, Apr 26 2025

A383099 Numbers whose prime indices have exactly one permutation with all equal run-sums.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19, 23, 25, 27, 29, 31, 32, 36, 37, 41, 43, 47, 48, 49, 53, 59, 61, 64, 67, 71, 73, 79, 81, 83, 89, 97, 101, 103, 107, 109, 113, 121, 125, 127, 128, 131, 137, 139, 149, 151, 157, 163, 167, 169, 173, 179, 181, 191, 193
Offset: 1

Views

Author

Gus Wiseman, Apr 20 2025

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798, sum A056239.

Examples

			The terms together with their prime indices begin:
    1: {}
    2: {1}
    3: {2}
    4: {1,1}
    5: {3}
    7: {4}
    8: {1,1,1}
    9: {2,2}
   11: {5}
   13: {6}
   16: {1,1,1,1}
   17: {7}
   19: {8}
   23: {9}
   25: {3,3}
   27: {2,2,2}
   29: {10}
   31: {11}
   32: {1,1,1,1,1}
   36: {1,1,2,2}
   37: {12}
   41: {13}
		

Crossrefs

For distinct instead of equal run-sums we have A000961, counted by A000005.
These are the positions of 1 in A382877.
For more than one choice we have A383015.
Partitions of this type are counted by A383095.
For no choices we have A383100, counted by A383096.
For at least one choice we have A383110, counted by A383098, see A383013.
For run-lengths instead of sums we have A383112 = positions of 1 in A382857.
A056239 adds up prime indices, row sums of A112798.
A304442 counts partitions with equal run-sums, ranks A353833.
A353851 counts compositions with equal run-sums, ranks A353848.

Programs

  • Mathematica
    Select[Range[100], Length[Select[Permutations[PrimePi/@Join @@ ConstantArray@@@FactorInteger[#]], SameQ@@Total/@Split[#]&]]==1&]

Formula

The complement is A383015 \/ A383100, for run-lengths A382879 \/ A383089.

A353862 Greatest run-sum of the prime indices of n.

Original entry on oeis.org

0, 1, 2, 2, 3, 2, 4, 3, 4, 3, 5, 2, 6, 4, 3, 4, 7, 4, 8, 3, 4, 5, 9, 3, 6, 6, 6, 4, 10, 3, 11, 5, 5, 7, 4, 4, 12, 8, 6, 3, 13, 4, 14, 5, 4, 9, 15, 4, 8, 6, 7, 6, 16, 6, 5, 4, 8, 10, 17, 3, 18, 11, 4, 6, 6, 5, 19, 7, 9, 4, 20, 4, 21, 12, 6, 8, 5, 6, 22, 4, 8
Offset: 1

Views

Author

Gus Wiseman, May 23 2022

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
A run-sum of a sequence is the sum of any maximal consecutive constant subsequence.

Examples

			The prime indices of 72 are {1,1,1,2,2}, with run-sums {3,4}, so a(72) = 4.
		

Crossrefs

Positions of first appearances are A008578.
For binary expansion we have A038374, least A144790.
For run-lengths instead of run-sums we have A051903.
Distinct run-sums are counted by A353835, weak A353861.
The least run-sum is given by A353931.
A001222 counts prime factors, distinct A001221.
A005811 counts runs in binary expansion.
A056239 adds up prime indices, row sums of A112798 and A296150.
A124010 gives prime signature, sorted A118914.
A300273 ranks collapsible partitions, counted by A275870.
A304442 counts partitions with all equal run-sums, compositions A353851.
A353832 represents the operation of taking run-sums of a partition.
A353833 ranks partitions with all equal run sums, nonprime A353834.
A353838 ranks partitions with all distinct run-sums, counted by A353837.
A353840-A353846 pertain to partition run-sum trajectory.

Programs

  • Mathematica
    Table[Max@@Cases[FactorInteger[n],{p_,k_}:>PrimePi[p]*k],{n,100}]

A383095 Number of integer partitions of n having exactly one permutation with all equal run-sums.

Original entry on oeis.org

1, 1, 2, 2, 3, 2, 6, 2, 4, 5, 6, 2, 12, 2, 6, 8, 5, 2, 20, 2, 12, 8, 6, 2, 20, 5, 6, 12, 12, 2, 34, 2, 6, 8, 6, 8, 45, 2, 6, 8, 20, 2, 34, 2, 12, 28, 6, 2, 30, 5, 20, 8, 12, 2, 52, 8, 20, 8, 6, 2, 78, 2, 6, 28, 7, 8, 34, 2, 12, 8, 34, 2, 80, 2, 6, 28, 12, 8, 34, 2, 30, 25
Offset: 0

Views

Author

Gus Wiseman, Apr 16 2025

Keywords

Examples

			The partition (2,2,1,1) has permutation (2,1,1,2) so is counted under a(6).
The a(1) = 1 through a(10) = 6 partitions (A=10):
  1  2   3    4     5      6       7        8         9          A
     11  111  22    11111  33      1111111  44        333        55
              1111         222              2222      33111      22222
                           2211             11111111  3111111    2221111
                           21111                      111111111  22111111
                           111111                                1111111111
		

Crossrefs

For distinct instead of equal run-sums we have A000005.
For run-lengths instead of sums we have A383094.
The complement is counted by A383096 + A383097, ranks A383100 \/ A383015.
These partitions are ranked by A383099 = positions of 1 in A382877.
Counting and ranking partitions by run-lengths and run-sums:
- constant: A047966 (ranks A072774), sums A304442 (ranks A353833)
- distinct: A098859 (ranks A130091), sums A353837 (ranks A353838)
- weakly decreasing: A100882 (ranks A242031), sums A304405 (ranks A357875)
- weakly increasing: A100883 (ranks A304678), sums A304406 (ranks A357861)
- strictly decreasing: A100881 (ranks A304686), sums A304428 (ranks A357862)
- strictly increasing: A100471 (ranks A334965), sums A304430 (ranks A357864)
A275870 counts collapsible partitions, ranks A300273.
A326534 ranks multiset partitions with a common sum, counted by A321455, normal A326518.
A353851 counts compositions with all equal run-sums, ranks A353848.
A383098 counts partitions with a permutation having all equal run-sums, ranks A383110.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], Length[Select[Permutations[#], SameQ@@Total/@Split[#]&]]==1&]],{n,0,15}]

Extensions

More terms from Bert Dobbelaere, Apr 26 2025

A383098 Number of integer partitions of n having at least one permutation with all equal run-sums.

Original entry on oeis.org

1, 1, 2, 2, 4, 2, 7, 2, 7, 5, 7, 2, 19, 2, 7, 8, 14, 2, 27, 2, 24, 8, 7, 2, 58, 5, 7, 13, 30, 2, 72, 2, 38, 8, 7, 8, 135, 2, 7, 8, 91, 2, 112, 2, 45, 38, 7, 2, 258, 5, 51, 8, 54, 2, 208, 8, 143, 8, 7, 2, 525, 2, 7, 44, 153, 8, 256, 2, 75, 8, 136, 2, 891, 2, 7, 57, 87, 8
Offset: 0

Views

Author

Gus Wiseman, Apr 17 2025

Keywords

Examples

			The partition (4,4,4,2,2,1,1,1,1) has permutations (4,2,2,4,1,1,1,1,4) and (4,1,1,1,1,4,2,2,4) so is counted under a(20).
The a(1) = 1 through a(10) = 7 partitions (A=10):
  1  2   3    4     5      6       7        8         9          A
     11  111  22    11111  33      1111111  44        333        55
              211          222              422       33111      22222
              1111         2211             2222      3111111    511111
                           3111             41111     111111111  2221111
                           21111            221111               22111111
                           111111           11111111             1111111111
		

Crossrefs

For distinct instead of equal run-sums we appear to have A382427.
For run-lengths instead of sums we have A383013, ranked by complement of A382879.
The case of a unique choice is A383095, ranks A383099 = positions of 1 in A382877.
The complement is counted by A383096, ranks A383100 = positions of 0 in A382877.
These partitions are ranked by A383110.
The case of more than one choice is A383097, ranks A383015.
Counting and ranking partitions by run-lengths and run-sums:
- constant: A047966 (ranks A072774), sums A304442 (ranks A353833)
- distinct: A098859 (ranks A130091), sums A353837 (ranks A353838)
- weakly decreasing: A100882 (ranks A242031), sums A304405 (ranks A357875)
- weakly increasing: A100883 (ranks A304678), sums A304406 (ranks A357861)
- strictly decreasing: A100881 (ranks A304686), sums A304428 (ranks A357862)
- strictly increasing: A100471 (ranks A334965), sums A304430 (ranks A357864)
A275870 counts collapsible partitions, ranks A300273.
A326534 ranks multiset partitions with a common sum, counted by A321455, normal A326518.
A353851 counts compositions with all equal run-sums, ranks A353848.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Select[Permutations[#],SameQ@@Total/@Split[#]&]!={}&]],{n,0,15}]

Formula

a(n) = A383097(n) + A383095(n), ranks A383015 \/ A383099.

Extensions

More terms from Bert Dobbelaere, Apr 26 2025

A383110 Numbers whose prime indices have a permutation with all equal run-sums.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 11, 12, 13, 16, 17, 19, 23, 25, 27, 29, 31, 32, 36, 37, 40, 41, 43, 47, 48, 49, 53, 59, 61, 63, 64, 67, 71, 73, 79, 81, 83, 89, 97, 101, 103, 107, 109, 112, 113, 121, 125, 127, 128, 131, 137, 139, 144, 149, 151, 157, 163, 167, 169, 173
Offset: 1

Views

Author

Gus Wiseman, Apr 20 2025

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798, sum A056239.

Examples

			The prime indices of 144 are {1,1,1,1,2,2}, with permutations with equal run sums (1,1,1,1,2,2), (1,1,2,1,1,2), (2,1,1,2,1,1), (2,2,1,1,1,1), so 144 is in the sequence.
The terms together with their prime indices begin:
   1: {}
   2: {1}
   3: {2}
   4: {1,1}
   5: {3}
   7: {4}
   8: {1,1,1}
   9: {2,2}
  11: {5}
  12: {1,1,2}
  13: {6}
  16: {1,1,1,1}
  17: {7}
  19: {8}
  23: {9}
  25: {3,3}
  27: {2,2,2}
  29: {10}
  31: {11}
  32: {1,1,1,1,1}
  36: {1,1,2,2}
  37: {12}
		

Crossrefs

For distinct run-sums we appear to have complement of A381636 (counted by A381717).
These are the positions of positive terms in A382877.
For run-lengths instead of sums we have complement of A382879, counted by A383013.
For more than one choice we have A383015.
Partitions of this type are counted by A383098.
For a unique choice we have A383099, counted by A383095.
The complement is A383100, counted by A383096.
A056239 adds up prime indices, row sums of A112798.
A304442 counts partitions with equal run-sums, ranks A353833.
A353851 counts compositions with equal run-sums, ranks A353848.

Programs

  • Mathematica
    Select[Range[100], Length[Select[Permutations[PrimePi/@Join @@ ConstantArray@@@FactorInteger[#]], SameQ@@Total/@Split[#]&]]>0&]

Formula

Equals A383015 \/ A383099, counted by A353851 \/ A383095.

A383096 Number of integer partitions of n having no permutation with all equal run-sums.

Original entry on oeis.org

0, 0, 0, 1, 1, 5, 4, 13, 15, 25, 35, 54, 58, 99, 128, 168, 217, 295, 358, 488, 603, 784, 995, 1253, 1517, 1953, 2429, 2997, 3688, 4563, 5532, 6840, 8311, 10135, 12303, 14875, 17842, 21635, 26008, 31177, 37247, 44581, 53062, 63259, 75130, 89096, 105551, 124752, 147015, 173520
Offset: 0

Views

Author

Gus Wiseman, Apr 17 2025

Keywords

Examples

			The a(3) = 1 through a(8) = 15 partitions:
  (21)  (31)  (32)    (42)   (43)      (53)
              (41)    (51)   (52)      (62)
              (221)   (321)  (61)      (71)
              (311)   (411)  (322)     (332)
              (2111)         (331)     (431)
                             (421)     (521)
                             (511)     (611)
                             (2221)    (3221)
                             (3211)    (3311)
                             (4111)    (4211)
                             (22111)   (5111)
                             (31111)   (22211)
                             (211111)  (32111)
                                       (311111)
                                       (2111111)
		

Crossrefs

For distinct instead of equal run-sums we appear to have A381717, q.v.
For run-lengths instead of sums we have A382915, ranks A382879, by signature A382914.
For more than one permutation we have A383097, ranks A383015.
The complement is counted by A383098, ranks A383110
These partitions are ranked by A383100, positions of 0 in A382877.
Counting and ranking partitions by run-lengths and run-sums:
- constant: A047966 (ranks A072774), sums A304442 (ranks A353833)
- distinct: A098859 (ranks A130091), sums A353837 (ranks A353838)
- weakly decreasing: A100882 (ranks A242031), sums A304405 (ranks A357875)
- weakly increasing: A100883 (ranks A304678), sums A304406 (ranks A357861)
- strictly decreasing: A100881 (ranks A304686), sums A304428 (ranks A357862)
- strictly increasing: A100471 (ranks A334965), sums A304430 (ranks A357864)
A275870 counts collapsible partitions, ranks A300273.
A326534 ranks multiset partitions with a common sum, counted by A321455, normal A326518.
A353851 counts compositions with all equal run-sums, ranks A353848.
A382876 counts permutations of prime indices with distinct run-sums, zeros A381636.
A383095 counts partitions having a unique permutation with equal run-sums, ranks A383099.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Length[Select[Permutations[#],SameQ@@Total/@Split[#]&]]==0&]],{n,0,15}]

Extensions

More terms from Bert Dobbelaere, Apr 26 2025

A353854 Length of the trajectory of the composition run-sum transformation (condensation) of the n-th composition in standard order.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 3, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 2, 3, 2, 3, 2, 2, 1, 1, 1, 2, 2, 1, 1, 3, 1, 1, 2, 2, 1, 1, 3, 2, 1, 1, 1, 2, 1, 2, 1, 2, 2, 2, 2, 3, 3, 2, 2, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 2, 3, 1, 1, 3, 2, 1, 1, 1, 2, 2, 2, 2
Offset: 0

Views

Author

Gus Wiseman, Jun 01 2022

Keywords

Comments

Every sequence can be uniquely split into a sequence of non-overlapping runs. For example, the runs of (2,2,1,1,1,3,2,2) are ((2,2),(1,1,1),(3),(2,2)), with sums (4,3,3,4). The run-sum trajectory is obtained by repeatedly taking the run-sum transformation (A353847) until the rank of an anti-run is reached. For example, the trajectory 11 -> 10 -> 8 corresponds to the trajectory (2,1,1) -> (2,2) -> (4), with length a(11) = 3.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The trajectory of 94685 and the a(94685) = 5 corresponding compositions:
  94685: (2,1,1,4,1,1,2,1,1,2,1)
  86357: (2,2,4,2,2,2,2,1)
  69889: (4,4,8,1)
  65793: (8,8,1)
  65537: (16,1)
		

Crossrefs

Positions of first appearances are A072639.
Positions of 1's are A333489, counted by A003242 (complement A261983).
The version for partitions is A353841.
The last part of the same trajectory is A353855.
This is the rank statistic counted by A353859.
A005811 counts runs in binary expansion.
A011782 counts compositions.
A066099 lists compositions in standard order.
A318928 gives runs-resistance of binary expansion.
A333627 represents the run-lengths of standard compositions.
A353832 represents the run-sum transformation of a partition.
A353840-A353846 pertain to the partition run-sum trajectory.
A353847 represents the run-sum transformation of a composition.
A353853-A353859 pertain to the composition run-sum trajectory.
A353932 lists run-sums of standard compositions, represented by A353847.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Table[Length[FixedPointList[Total/@Split[#]&,stc[n]]]-1,{n,0,100}]

A353855 Last term of the trajectory of the composition run-sum transformation (condensation) of the n-th composition in standard order.

Original entry on oeis.org

0, 1, 2, 2, 4, 5, 6, 4, 8, 9, 8, 8, 12, 13, 8, 8, 16, 17, 18, 18, 20, 17, 22, 20, 24, 25, 24, 24, 20, 17, 18, 16, 32, 33, 34, 34, 32, 37, 38, 32, 40, 41, 32, 34, 44, 45, 32, 40, 48, 49, 50, 50, 52, 49, 54, 52, 40, 41, 40, 32, 32, 37, 34, 32, 64, 65, 66, 66, 68
Offset: 0

Views

Author

Gus Wiseman, Jun 01 2022

Keywords

Comments

Every sequence can be uniquely split into a sequence of non-overlapping runs. For example, the runs of (2,2,1,1,1,3,2,2) are ((2,2),(1,1,1),(3),(2,2)), with sums (4,3,3,4). The run-sum trajectory is obtained by repeatedly taking the run-sum transformation (A353847) until the rank of an anti-run is reached. For example, the trajectory 11 -> 10 -> 8, corresponding to (2,1,1) -> (2,2) -> (4), has last term a(11) = 8.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The trajectory 139 -> 138 -> 136 -> 128 ends with a(139) = 128.
		

Crossrefs

The version for partitions is A353842.
This trajectory has length A353854, firsts A072639, partitions A353841.
A005811 counts runs in binary expansion.
A011782 counts compositions.
A066099 lists compositions in standard order.
A318928 gives runs-resistance of binary expansion.
A325268 counts partitions by omicron, rank statistic A304465.
A333627 ranks the run-lengths of standard compositions.
A351014 counts distinct runs in standard compositions, firsts A351015.
A353840-A353846 pertain to a partition's run-sum trajectory.
A353847 represents a composition's run-sums, partitions A353832.
A353853-A353859 pertain to a composition's run-sum trajectory.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Table[Total[2^Accumulate[Reverse[FixedPoint[Total/@Split[#]&,stc[n]]]]/2],{n,0,100}]

A353858 Number of integer compositions of n with run-sum trajectory ending in a singleton.

Original entry on oeis.org

0, 1, 2, 2, 5, 2, 8, 2, 20, 5, 8, 2, 78, 2, 8, 8, 223, 2, 179, 2, 142, 8, 8, 2, 4808
Offset: 0

Views

Author

Gus Wiseman, Jun 17 2022

Keywords

Comments

Every sequence can be uniquely split into a sequence of non-overlapping runs. For example, the runs of (2,2,1,1,1,3,2,2) are ((2,2),(1,1,1),(3),(2,2)), with sums (4,3,3,4). The run-sum trajectory is obtained by repeatedly taking the run-sums (cf. A353847) until an anti-run composition (A003242) is reached. For example, the composition (2,2,1,1,2) is counted under a(8) because it has the following run-sum trajectory: (2,2,1,1,2) -> (4,2,2) -> (4,4) -> (8).

Examples

			The a(0) = 0 through a(8) = 20 compositions:
  .  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
          (11)  (111)  (22)    (11111)  (33)      (1111111)  (44)
                       (112)            (222)                (224)
                       (211)            (1113)               (422)
                       (1111)           (2112)               (1124)
                                        (3111)               (2114)
                                        (11211)              (2222)
                                        (111111)             (4112)
                                                             (4211)
                                                             (11114)
                                                             (21122)
                                                             (22112)
                                                             (41111)
                                                             (111122)
                                                             (112112)
                                                             (211211)
                                                             (221111)
                                                             (1111211)
                                                             (1121111)
                                                             (11111111)
		

Crossrefs

The version for partitions is A353845, ranked by A353844.
The trajectory itself is A353853, last part A353855.
The lengths of trajectories of standard compositions are A353854.
This is column k = 1 of A353856, for partitions A353843.
These compositions are ranked by A353857.
A011782 counts compositions.
A066099 lists compositions in standard order.
A238279 and A333755 count compositions by number of runs.
A275870 counts collapsible partitions, ranked by A300273.
A333489 ranks anti-runs, counted by A003242 (complement A261983).
A353840-A353846 pertain to partition run-sum trajectory.
A353847 represents the run-sums of a composition, partitions A353832.
A353851 counts compositions with equal run-sums, ranked by A353848.
A353859 counts compositions by length of run-sum trajectory.
A353860 counts collapsible compositions.
A353932 lists run-sums of standard compositions.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations/@ IntegerPartitions[n], Length[FixedPoint[Total/@Split[#]&,#]]==1&]],{n,0,15}]
Previous Showing 21-30 of 44 results. Next