cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-44 of 44 results.

A354909 Number of integer compositions of n that are not the run-sums of any other composition.

Original entry on oeis.org

0, 0, 1, 1, 3, 7, 16, 33, 74, 155, 329, 688, 1439, 2975, 6154, 12654, 25964, 53091, 108369, 220643, 448520
Offset: 0

Views

Author

Gus Wiseman, Jun 19 2022

Keywords

Comments

Every sequence can be uniquely split into a sequence of non-overlapping runs. For example, the runs of (2,2,1,1,1,3,2,2) are ((2,2),(1,1,1),(3),(2,2)), with sums (4,3,3,4).

Examples

			The a(0) = 0 through a(6) = 16 compositions:
  .  .  (11)  (111)  (112)   (113)    (114)
                     (211)   (311)    (411)
                     (1111)  (1112)   (1113)
                             (1121)   (1122)
                             (1211)   (1131)
                             (2111)   (1221)
                             (11111)  (1311)
                                      (2112)
                                      (2211)
                                      (3111)
                                      (11112)
                                      (11121)
                                      (11211)
                                      (12111)
                                      (21111)
                                      (111111)
		

Crossrefs

The version for binary words is A000918, complement A000126.
These compositions are ranked by A354904 = positions of zeros in A354578.
The complement is counted by A354910, ranked by A354912.
A003242 counts anti-run compositions, ranked by A333489.
A238279 and A333755 count compositions by number of runs.
A353851 counts compositions with all equal run-sums, ranked by A353848.
A353853-A353859 pertain to composition run-sum trajectory.
A353932 lists run-sums of standard compositions, rows ranked by A353847.

Programs

  • Mathematica
    Table[Length[Complement[Join@@Permutations/@IntegerPartitions[n], Total/@Split[#]&/@Join@@Permutations/@IntegerPartitions[n]]],{n,0,15}]

A354910 Number of compositions of n that are the run-sums of some other composition.

Original entry on oeis.org

1, 1, 1, 3, 5, 9, 16, 31, 54, 101, 183, 336, 609, 1121, 2038, 3730, 6804, 12445, 22703, 41501, 75768
Offset: 0

Views

Author

Gus Wiseman, Jun 20 2022

Keywords

Comments

Every sequence can be uniquely split into a sequence of non-overlapping runs. For example, the runs of (2,2,1,1,1,3,2,2) are ((2,2),(1,1,1),(3),(2,2)), with sums (4,3,3,4).

Examples

			The a(0) = 0 through a(6) = 16 compositions:
  ()  (1)  (2)  (3)   (4)    (5)    (6)
                (12)  (13)   (14)   (15)
                (21)  (22)   (23)   (24)
                      (31)   (32)   (33)
                      (121)  (41)   (42)
                             (122)  (51)
                             (131)  (123)
                             (212)  (132)
                             (221)  (141)
                                    (213)
                                    (222)
                                    (231)
                                    (312)
                                    (321)
                                    (1212)
                                    (2121)
		

Crossrefs

The version for binary words is A000126, complement A000918
The complement is counted by A354909, ranked by A354904.
These compositions are ranked by A354912 = nonzeros of A354578.
A003242 counts anti-run compositions, ranked by A333489.
A238279 and A333755 count compositions by number of runs.
A353851 counts compositions with all equal run-sums, ranked by A353848.
A353853-A353859 pertain to composition run-sum trajectory.
A353932 lists run-sums of standard compositions, rows ranked by A353847.

Programs

  • Mathematica
    Table[Length[Union[Total/@Split[#]&/@ Join@@Permutations/@IntegerPartitions[n]]],{n,0,15}]

A354908 Numbers k such that the k-th composition in standard order (graded reverse-lexicographic, A066099) is collapsible.

Original entry on oeis.org

1, 2, 3, 4, 7, 8, 10, 11, 14, 15, 16, 31, 32, 36, 39, 42, 43, 46, 47, 58, 59, 60, 62, 63, 64, 127, 128, 136, 138, 139, 142, 143, 168, 170, 171, 174, 175, 184, 186, 187, 190, 191, 232, 234, 235, 238, 239, 248, 250, 251, 254, 255, 256, 292, 295, 316, 319, 484
Offset: 1

Views

Author

Gus Wiseman, Jun 23 2022

Keywords

Comments

The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.
If a collapse is an adding together of some partial run of an integer composition c, we say c is collapsible iff by some sequence of collapses it can be reduced to a single part. An example of such a sequence of collapses is (11132112) -> (332112) -> (33222) -> (6222) -> (66) -> (n), which shows that (11132112) is a collapsible composition of 12.

Examples

			The terms together with their corresponding compositions begin:
  1:(1)  2:(2)   4:(3)     8:(4)     16:(5)      32:(6)
         3:(11)  7:(111)  10:(22)    31:(11111)  36:(33)
                          11:(211)               39:(3111)
                          14:(112)               42:(222)
                          15:(1111)              43:(2211)
                                                 46:(2112)
                                                 47:(21111)
                                                 58:(1122)
                                                 59:(11211)
                                                 60:(1113)
                                                 62:(11112)
                                                 63:(111111)
		

Crossrefs

The standard compositions used here are A066099, run-sums A353847/A353932.
The version for Heinz numbers of partitions is A300273, counted by A275870.
These compositions are counted by A353860.
A003242 counts anti-run compositions, ranked by A333489, complement A261983.
A011782 counts compositions.
A124767 counts runs in standard compositions.
A238279 and A333755 count compositions by number of runs.
A334968 counts distinct sums of subsequences of standard compositions.
A351014 counts distinct runs of standard compositions, firsts A351015.
A353853-A353859 pertain to composition run-sum trajectory.
A354582 counts distinct partial runs of standard compositions, sums A354907.

Programs

  • Mathematica
    repcams[q_List]:=repcams[q]=Union[{q},If[UnsameQ@@q,{},Union@@repcams/@Union[Insert[Drop[q,#],Plus@@Take[q,#],First[#]]&/@Select[Tuples[Range[Length[q]],2],And[Less@@#,SameQ@@Take[q,#]]&]]]];
    stc[n_]:=Differences[Prepend[Join@@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Select[Range[0,100],MemberQ[repcams[stc[#]],{_}]&]

A383088 Numbers whose multiset of prime indices does not have all equal run-sums.

Original entry on oeis.org

6, 10, 14, 15, 18, 20, 21, 22, 24, 26, 28, 30, 33, 34, 35, 36, 38, 39, 42, 44, 45, 46, 48, 50, 51, 52, 54, 55, 56, 57, 58, 60, 62, 65, 66, 68, 69, 70, 72, 74, 75, 76, 77, 78, 80, 82, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 95, 96, 98, 99, 100, 102, 104, 105
Offset: 1

Views

Author

Gus Wiseman, Apr 17 2025

Keywords

Comments

First differs from A381871 in having 36.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798, sum A056239.

Examples

			The prime indices of 36 are {1,1,2,2}, with run-sums (2,4), so 36 is in the sequence, even though we have the multiset partition {{1,1},{2},{2}} with equal sums.
The terms together with their prime indices begin:
    6: {1,2}
   10: {1,3}
   14: {1,4}
   15: {2,3}
   18: {1,2,2}
   20: {1,1,3}
   21: {2,4}
   22: {1,5}
   24: {1,1,1,2}
   26: {1,6}
   28: {1,1,4}
   30: {1,2,3}
   33: {2,5}
   34: {1,7}
   35: {3,4}
   36: {1,1,2,2}
   38: {1,8}
   39: {2,6}
   42: {1,2,4}
   44: {1,1,5}
   45: {2,2,3}
   46: {1,9}
		

Crossrefs

For run-lengths instead of sums we have A059404, distinct A130092.
The complement is A353833, counted by A304442.
For distinct instead of equal run-sums we have A353839.
Partitions of this type are counted by A382076.
Counting and ranking partitions by run-lengths and run-sums:
- constant: A047966 (ranks A072774), sums A304442 (ranks A353833)
- distinct: A098859 (ranks A130091), sums A353837 (ranks A353838)
- weakly decreasing: A100882 (ranks A242031), sums A304405 (ranks A357875)
- weakly increasing: A100883 (ranks A304678), sums A304406 (ranks A357861)
- strictly decreasing: A100881 (ranks A304686), sums A304428 (ranks A357862)
- strictly increasing: A100471 (ranks A334965), sums A304430 (ranks A357864)
A001222 counts prime factors, distinct A001221.
A056239 adds up prime indices, row sums of A112798.
A326534 ranks multiset partitions with a common sum, counted by A321455, normal A326518.
A353851 counts compositions with a common run-sum, ranks A353848.
A353862 gives the greatest run-sum of prime indices, least A353931.
A382877 counts permutations of prime indices with equal run-sums, zeros A383100.
A383098 counts partitions with a permutation having all equal run-sums, ranks A383110.

Programs

  • Mathematica
    Select[Range[100], !SameQ@@Cases[FactorInteger[#],{p_,k_}:>PrimePi[p]*k]&]
Previous Showing 41-44 of 44 results.