cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 38 results. Next

A383534 Irregular triangle read by rows where row n lists the positive first differences of the 0-prepended prime indices of n.

Original entry on oeis.org

1, 2, 1, 3, 1, 1, 4, 1, 2, 1, 2, 5, 1, 1, 6, 1, 3, 2, 1, 1, 7, 1, 1, 8, 1, 2, 2, 2, 1, 4, 9, 1, 1, 3, 1, 5, 2, 1, 3, 10, 1, 1, 1, 11, 1, 2, 3, 1, 6, 3, 1, 1, 1, 12, 1, 7, 2, 4, 1, 2, 13, 1, 1, 2, 14, 1, 4, 2, 1, 1, 8, 15, 1, 1, 4, 1, 2, 2, 5, 1, 5, 16, 1, 1, 3, 2
Offset: 1

Views

Author

Gus Wiseman, May 20 2025

Keywords

Comments

Also differences of distinct 0-prepended prime indices of n.

Examples

			The prime indices of 140 are {1,1,3,4}, zero prepended {0,1,1,3,4}, differences (1,0,2,1), positive (1,2,1).
Rows begin:
    1: ()        16: (1)        31: (11)
    2: (1)       17: (7)        32: (1)
    3: (2)       18: (1,1)      33: (2,3)
    4: (1)       19: (8)        34: (1,6)
    5: (3)       20: (1,2)      35: (3,1)
    6: (1,1)     21: (2,2)      36: (1,1)
    7: (4)       22: (1,4)      37: (12)
    8: (1)       23: (9)        38: (1,7)
    9: (2)       24: (1,1)      39: (2,4)
   10: (1,2)     25: (3)        40: (1,2)
   11: (5)       26: (1,5)      41: (13)
   12: (1,1)     27: (2)        42: (1,1,2)
   13: (6)       28: (1,3)      43: (14)
   14: (1,3)     29: (10)       44: (1,4)
   15: (2,1)     30: (1,1,1)    45: (2,1)
		

Crossrefs

Row-lengths are A001221, sums A061395.
Rows start with A055396, end with A241919.
For multiplicities instead of differences we have A124010 (prime signature).
Including difference 0 gives A287352, without prepending A355536.
Positions of first appearances of rows are A358137.
Positions of strict rows are A383512, counted by A098859.
Positions of non-strict rows are A383513, counted by A336866.
Heinz numbers of rows are A383535.
Restricting to rows of squarefree index gives A384008.
Without prepending we get A384009.
A000040 lists the primes, differences A001223.
A056239 adds up prime indices, row sums of A112798, counted by A001222.
A320348 counts strict partitions with distinct 0-appended differences, ranks A325388.
A325324 counts partitions with distinct 0-appended differences, ranks A325367.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[DeleteCases[Differences[Prepend[prix[n],0]],0],{n,100}]

Formula

a(A005117(n)) = A384008(n).

A355528 Minimal difference between adjacent 0-prepended prime indices of n > 1.

Original entry on oeis.org

1, 2, 0, 3, 1, 4, 0, 0, 1, 5, 0, 6, 1, 1, 0, 7, 0, 8, 0, 2, 1, 9, 0, 0, 1, 0, 0, 10, 1, 11, 0, 2, 1, 1, 0, 12, 1, 2, 0, 13, 1, 14, 0, 0, 1, 15, 0, 0, 0, 2, 0, 16, 0, 2, 0, 2, 1, 17, 0, 18, 1, 0, 0, 3, 1, 19, 0, 2, 1, 20, 0, 21, 1, 0, 0, 1, 1, 22, 0, 0, 1, 23
Offset: 2

Views

Author

Gus Wiseman, Jul 10 2022

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The 0-prepended prime indices of 9842 are {0,1,4,8,12}, with differences (1,3,4,4), so a(9842) = 1.
		

Crossrefs

Crossrefs found in the link are not repeated here.
Positions of first appearances are 4 followed by A000040.
Positions of positive terms are A005117, complement A013929.
A similar statistic is counted by A238353.
The maximal version is A286469, without prepending A355526.
Without prepending we have A355524 or A355525.
Positions of ones are A355530.
A001522 counts partitions with a fixed point (unproved), ranked by A352827.
A112798 lists prime indices, with sum A056239.
A287352, A355533, A355534, A355536 list the differences of prime indices.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Min@@Differences[Prepend[primeMS[n],0]],{n,2,100}]

A358133 Triangle read by rows whose n-th row lists the first differences of the n-th composition in standard order (row n of A066099).

Original entry on oeis.org

0, -1, 1, 0, 0, -2, 0, -1, 0, 2, 1, -1, 0, 1, 0, 0, 0, -3, -1, -2, 0, 1, 0, -1, -1, 1, -1, 0, 0, 3, 2, -2, 1, 0, 1, -1, 0, 0, 2, 0, 1, -1, 0, 0, 1, 0, 0, 0, 0, -4, -2, -3, 0, 0, -1, -1, -2, 1, -2, 0, 0, 2, 1, -2, 0, 0, 0, -1, 0, -1, 2, -1, 1, -1, -1, 0, 1, -1
Offset: 3

Views

Author

Gus Wiseman, Oct 31 2022

Keywords

Comments

The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			Triangle begins (dots indicate empty rows):
   1:   .
   2:   .
   3:   0
   4:   .
   5:  -1
   6:   1
   7:   0  0
   8:   .
   9:  -2
  10:   0
  11:  -1  0
  12:   2
  13:   1 -1
  14:   0  1
  15:   0  0  0
		

Crossrefs

See link for sequences related to standard compositions.
First differences of rows of A066099.
The version for Heinz numbers of partitions is A355536, ranked by A253566.
The partial sums instead of first differences are A358134.
Row sums are A358135.
A011782 counts compositions.
A351014 counts distinct runs in standard compositions.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Table[Differences[stc[n]],{n,100}]

A355527 Squarefree numbers having at least one pair of consecutive prime factors. Numbers n such that the minimal difference between adjacent prime indices of n is 1.

Original entry on oeis.org

6, 15, 30, 35, 42, 66, 70, 77, 78, 102, 105, 114, 138, 143, 154, 165, 174, 186, 195, 210, 221, 222, 231, 246, 255, 258, 282, 285, 286, 318, 323, 330, 345, 354, 366, 385, 390, 402, 426, 429, 435, 437, 438, 442, 455, 462, 465, 474, 498, 510, 534, 546, 555, 570
Offset: 1

Views

Author

Gus Wiseman, Jul 10 2022

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
A number is squarefree if it is not divisible by any perfect square > 1.
A number has consecutive prime factors if it is divisible by both prime(k) and prime(k+1) for some k.

Examples

			The terms together with their prime indices begin:
    6: {1,2}
   15: {2,3}
   30: {1,2,3}
   35: {3,4}
   42: {1,2,4}
   66: {1,2,5}
   70: {1,3,4}
   77: {4,5}
   78: {1,2,6}
  102: {1,2,7}
  105: {2,3,4}
  114: {1,2,8}
  138: {1,2,9}
  143: {5,6}
  154: {1,4,5}
  165: {2,3,5}
  174: {1,2,10}
  186: {1,2,11}
  195: {2,3,6}
  210: {1,2,3,4}
		

Crossrefs

Crossrefs found in the link are not repeated here.
All terms are in A005117, complement A013929.
For minimal difference <= 1 we have A055932.
For maximal instead of minimal difference = 1 we have A066312.
For minimal difference > 1 we have A325160.
If zero is considered a prime index we get A355530.
A001522 counts partitions with a fixed point (unproved), ranked by A352827.
A287352, A355533, A355534, A355536 list the differences of prime indices.
A355524 or A355525 give minimal difference between prime indices.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Min@@Differences[primeMS[#]]==1&]

Formula

Intersection of A005117 (squarefree) and A104210 (has consecutive primes).

A355532 Maximal augmented difference between adjacent reversed prime indices of n; a(1) = 0.

Original entry on oeis.org

0, 1, 2, 1, 3, 2, 4, 1, 2, 3, 5, 2, 6, 4, 2, 1, 7, 2, 8, 3, 3, 5, 9, 2, 3, 6, 2, 4, 10, 2, 11, 1, 4, 7, 3, 2, 12, 8, 5, 3, 13, 3, 14, 5, 2, 9, 15, 2, 4, 3, 6, 6, 16, 2, 3, 4, 7, 10, 17, 2, 18, 11, 3, 1, 4, 4, 19, 7, 8, 3, 20, 2, 21, 12, 2, 8, 4, 5, 22, 3, 2
Offset: 1

Views

Author

Gus Wiseman, Jul 14 2022

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The augmented differences aug(q) of a (usually weakly decreasing) sequence q of length k are given by aug(q)i = q_i - q{i+1} + 1 if i < k and aug(q)_k = q_k. For example, we have aug(6,5,5,3,3,3) = (2,1,3,1,1,3).

Examples

			The reversed prime indices of 825 are (5,3,3,2), with augmented differences (3,1,2,2), so a(825) = 3.
		

Crossrefs

Crossrefs found in the link are not repeated here.
Prepending 1 to the positions of 1's gives A000079.
Positions of first appearances are A008578.
Positions of 2's are A065119.
The non-augmented version is A286470, also A355526.
The non-augmented minimal version is A355524, also A355525.
The minimal version is A355531.
Row maxima of A355534, which has Heinz number A325351.
A001222 counts prime indices, distinct A001221.
A112798 lists prime indices, sum A056239.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    aug[y_]:=Table[If[i
    				

A356958 Triangle read by rows: if n has weakly increasing prime indices (a,b,...,y,z) then row n is (b-a+1, ..., y-a+1, z-a+1).

Original entry on oeis.org

1, 2, 1, 1, 1, 3, 1, 2, 4, 2, 1, 1, 1, 2, 2, 1, 3, 3, 5, 1, 1, 2, 1, 6, 1, 1, 1, 4, 2, 3, 1, 1, 1, 1, 4, 7, 2, 1, 2, 2, 8, 5, 1, 1, 3, 2, 4, 1, 5, 1, 2, 9, 1, 1, 1, 2, 1, 3, 3, 6, 1, 6, 2, 2, 2, 3, 1, 1, 4, 7, 10, 1, 2, 3, 11, 1, 3, 1, 1, 1, 1, 1, 4, 2, 5
Offset: 1

Views

Author

Gus Wiseman, Dec 27 2022

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			Triangle begins:
   1:   .
   2:   .
   3:   .
   4:   1
   5:   .
   6:   2
   7:   .
   8:  1 1
   9:   1
  10:   3
  11:   .
  12:  1 2
  13:   .
  14:   4
  15:   2
  16: 1 1 1
For example, the prime indices of 315 are (2,2,3,4), so row 315 is (2,3,4) - 2 + 1 = (1,2,3).
		

Crossrefs

Row lengths are A001222(n) - 1.
Indices of empty rows are A008578.
Even bisection is A112798.
Heinz numbers of rows are A246277.
An opposite version is A358172, Heinz numbers A358195.
Row sums are A359358(n) + A001222(n) - 1.
A112798 list prime indices, sum A056239.
A243055 subtracts the least prime index from the greatest.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[If[n==1,{},1-First[primeMS[n]]+Rest[primeMS[n]]],{n,100}]

A358170 Heinz number of the partial sums of the n-th composition in standard order (A066099).

Original entry on oeis.org

1, 2, 3, 6, 5, 15, 10, 30, 7, 35, 21, 105, 14, 70, 42, 210, 11, 77, 55, 385, 33, 231, 165, 1155, 22, 154, 110, 770, 66, 462, 330, 2310, 13, 143, 91, 1001, 65, 715, 455, 5005, 39, 429, 273, 3003, 195, 2145, 1365, 15015, 26, 286, 182, 2002, 130, 1430, 910, 10010
Offset: 0

Views

Author

Gus Wiseman, Dec 20 2022

Keywords

Comments

The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.
The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.

Examples

			The terms together with their prime indices begin:
           1: {}
           2: {1}
           3: {2}
           6: {1,2}
           5: {3}
          15: {2,3}
          10: {1,3}
          30: {1,2,3}
           7: {4}
          35: {3,4}
          21: {2,4}
         105: {2,3,4}
          14: {1,4}
          70: {1,3,4}
          42: {1,2,4}
         210: {1,2,3,4}
		

Crossrefs

See link for sequences related to standard compositions.
Applying A001221 or A001222 gives A000120.
The image is A005117 (squarefree numbers).
The reverse version is A019565, triangular version A048793.
Greatest prime index of a(n) is A029837 or A070939.
Least prime index of a(n) is A065120.
The adjusted version is A253565, inverse A253566, reverse A005940.
These are the Heinz numbers of the rows of A358134.
Sum of prime indices of a(n) is A359042.
A066099 lists standard compositions.
A112798 list prime indices, sum A056239.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Times@@Prime/@#&/@Table[Accumulate[stc[n]],{n,0,100}]

A358172 Triangle read by rows: if n has weakly increasing prime indices (a,b,...,y,z) then row n is (z-a+1, z-b+1, ..., z-y+1).

Original entry on oeis.org

1, 2, 1, 1, 1, 3, 2, 2, 4, 2, 1, 1, 1, 2, 1, 3, 3, 3, 5, 2, 2, 2, 1, 6, 1, 1, 4, 4, 3, 2, 1, 1, 1, 1, 4, 7, 2, 2, 2, 1, 8, 5, 3, 3, 3, 4, 3, 5, 5, 2, 2, 9, 2, 2, 2, 2, 1, 3, 1, 6, 6, 6, 2, 1, 1, 3, 4, 4, 4, 7, 10, 3, 3, 2, 11, 3, 3, 1, 1, 1, 1, 1, 4, 5, 4
Offset: 1

Views

Author

Gus Wiseman, Dec 20 2022

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			Triangle begins:
   1:   .
   2:   .
   3:   .
   4:   1
   5:   .
   6:   2
   7:   .
   8:  1 1
   9:   1
  10:   3
  11:   .
  12:  2 2
  13:   .
  14:   4
  15:   2
  16: 1 1 1
  17:   .
  18:  2 1
  19:   .
  20:  3 3
For example, the prime indices of 900 are (1,1,2,2,3,3), so row 900 is 3 - (1,1,2,2,3) + 1 = (3,3,2,2,1).
		

Crossrefs

Row lengths are A001222(n) - 1.
Indices of empty rows are A008578.
Even-indexed rows have sums A243503.
Row sums are A326844(n) + A001222(n) - 1.
An opposite version is A356958, Heinz numbers A246277.
Heinz numbers of the rows are A358195, even bisection A241916.
A112798 list prime indices, sum A056239.
A243055 subtracts the least prime index from the greatest.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[If[n==1,{},1+Last[primeMS[n]]-Most[primeMS[n]]],{n,100}]

A355523 Number of distinct differences between adjacent prime indices of n.

Original entry on oeis.org

0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 2, 0, 1, 1, 1, 0, 2, 0, 2, 1, 1, 0, 2, 1, 1, 1, 2, 0, 1, 0, 1, 1, 1, 1, 2, 0, 1, 1, 2, 0, 2, 0, 2, 2, 1, 0, 2, 1, 2, 1, 2, 0, 2, 1, 2, 1, 1, 0, 2, 0, 1, 2, 1, 1, 2, 0, 2, 1, 2, 0, 2, 0, 1, 2, 2, 1, 2, 0, 2, 1, 1, 0, 3, 1, 1, 1, 2, 0, 2, 1, 2, 1, 1, 1, 2, 0, 2, 2, 2, 0, 2, 0, 2, 1
Offset: 1

Views

Author

Gus Wiseman, Jul 10 2022

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			For example, the prime indices of 22770 are {1,2,2,3,5,9}, with differences (1,0,1,2,4), so a(22770) = 4.
		

Crossrefs

Crossrefs found in the link are not repeated here.
Counting m such that A056239(m) = n and a(m) = k gives A279945.
With multiplicity we have A252736(n) = A001222(n) - 1.
The maximal difference is A286470, minimal A355524.
A008578 gives the positions of 0's.
A287352 lists differences between 0-prepended prime indices.
A355534 lists augmented differences between prime indices.
A355536 lists differences between prime indices.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Length[Union[Differences[primeMS[n]]]],{n,1000}]
  • PARI
    A355523(n) = if(1==n, 0, my(pis = apply(primepi,factor(n)[,1]), difs = vector(#pis-1, i, pis[i+1]-pis[i])); (#Set(difs)+!issquarefree(n))); \\ Antti Karttunen, Jan 20 2025

Extensions

Data section extended to a(105) by Antti Karttunen, Jan 20 2025

A355530 Squarefree numbers that are either even or have at least one pair of consecutive prime factors. Numbers n such that the minimal difference between adjacent 0-prepended prime indices of n is 1.

Original entry on oeis.org

2, 6, 10, 14, 15, 22, 26, 30, 34, 35, 38, 42, 46, 58, 62, 66, 70, 74, 77, 78, 82, 86, 94, 102, 105, 106, 110, 114, 118, 122, 130, 134, 138, 142, 143, 146, 154, 158, 165, 166, 170, 174, 178, 182, 186, 190, 194, 195, 202, 206, 210, 214, 218, 221, 222, 226, 230
Offset: 1

Views

Author

Gus Wiseman, Jul 10 2022

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
A number is squarefree if it is not divisible by any perfect square > 1.
A number has consecutive prime factors if it is divisible by both prime(k) and prime(k+1) for some k.

Examples

			The terms together with their prime indices begin:
   2: {1}
   6: {1,2}
  10: {1,3}
  14: {1,4}
  15: {2,3}
  22: {1,5}
  26: {1,6}
  30: {1,2,3}
  34: {1,7}
  35: {3,4}
  38: {1,8}
  42: {1,2,4}
  46: {1,9}
  58: {1,10}
  62: {1,11}
  66: {1,2,5}
  70: {1,3,4}
		

Crossrefs

Crossrefs found in the link are not repeated here.
All terms are in A005117, complement A013929.
For maximal instead of minimal difference we have A055932 or A066312.
Not prepending zero gives A355527.
A001522 counts partitions with a fixed point (unproved), ranked by A352827.
A056239 adds up prime indices.
A238352 counts partitions by fixed points, rank statistic A352822.
A279945 counts partitions by number of distinct differences.
A287352, A355533, A355534, A355536 list the differences of prime indices.
A355524 gives minimal difference if singletons go to 0, to index A355525.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Min@@Differences[Prepend[primeMS[#],0]]==1&]

Formula

Equals A005117 /\ (A005843 \/ A104210).
Previous Showing 21-30 of 38 results. Next