cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-55 of 55 results.

A370817 Greatest number of multisets that can be obtained by choosing a prime factor of each factor in an integer factorization of n into unordered factors > 1.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 2, 1, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 3, 1, 1, 2, 2, 2, 3, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 1, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 4, 1, 2, 2, 1, 2, 3, 1, 2, 2, 3, 1, 3, 1, 2, 2, 2, 2, 3, 1, 2, 1, 2, 1, 4, 2, 2, 2
Offset: 1

Views

Author

Gus Wiseman, Mar 07 2024

Keywords

Comments

First differs from A096825 at a(210) = 4, A096825(210) = 6.
First differs from A343943 at a(210) = 4, A343943(210) = 6.
First differs from A345926 at a(90) = 4, A345926(90) = 3.

Examples

			For the factorizations of 60 we have the following choices (using prime indices {1,2,3} instead of prime factors {2,3,5}):
  (2*2*3*5): {{1,1,2,3}}
   (2*2*15): {{1,1,2},{1,1,3}}
   (2*3*10): {{1,1,2},{1,2,3}}
    (2*5*6): {{1,1,3},{1,2,3}}
    (3*4*5): {{1,2,3}}
     (2*30): {{1,1},{1,2},{1,3}}
     (3*20): {{1,2},{2,3}}
     (4*15): {{1,2},{1,3}}
     (5*12): {{1,3},{2,3}}
     (6*10): {{1,1},{1,2},{1,3},{2,3}}
       (60): {{1},{2},{3}}
So a(60) = 4.
		

Crossrefs

For all divisors (not just prime factors) we have A370816.
The version for partitions is A370809, for all divisors A370808.
A000005 counts divisors.
A001055 counts factorizations, strict A045778.
A006530 gives greatest prime factor, least A020639.
A027746 lists prime factors, A112798 indices, length A001222.
A355741 chooses prime factors of prime indices, variations A355744, A355745.
A368413 counts non-choosable factorizations, complement A368414.
A370813 counts non-divisor-choosable factorizations, complement A370814.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Max[Length[Union[Sort/@Tuples[If[#==1,{},First/@FactorInteger[#]]&/@#]]]&/@facs[n]],{n,100}]

A370588 Number of subsets of {1..n} containing n such that only one set can be obtained by choosing a different prime factor of each element.

Original entry on oeis.org

0, 0, 1, 2, 2, 6, 6, 18, 12, 20, 36, 104, 76, 284, 320, 408, 252, 1548, 872, 3968, 2800, 4704, 8568, 24008, 10832, 14832, 40688, 18240, 43632, 176240, 97344, 449824, 95328, 404992, 760752, 698864, 436464, 3296048, 3564576, 4057904, 2677776, 16892352, 8676576
Offset: 0

Views

Author

Gus Wiseman, Feb 28 2024

Keywords

Comments

For example, the only choice of a different prime factor of each element of (4,5,6) is (2,5,3), so {4,5,6} is counted under a(6).

Examples

			The a(0) = 0 through a(8) = 12 subsets:
  .  .  {2}  {3}    {4}    {5}      {2,6}    {7}        {8}
             {2,3}  {3,4}  {2,5}    {3,6}    {2,7}      {3,8}
                           {3,5}    {4,6}    {3,7}      {5,8}
                           {4,5}    {2,5,6}  {4,7}      {6,8}
                           {2,3,5}  {3,5,6}  {5,7}      {7,8}
                           {3,4,5}  {4,5,6}  {2,3,7}    {3,5,8}
                                             {2,5,7}    {3,7,8}
                                             {2,6,7}    {5,6,8}
                                             {3,4,7}    {5,7,8}
                                             {3,5,7}    {6,7,8}
                                             {3,6,7}    {3,5,7,8}
                                             {4,5,7}    {5,6,7,8}
                                             {4,6,7}
                                             {2,3,5,7}
                                             {2,5,6,7}
                                             {3,4,5,7}
                                             {3,5,6,7}
                                             {4,5,6,7}
		

Crossrefs

First differences of A370584, cf. A370582, complement A370583.
For any number of choices we have A370586, complement A370587.
For binary indices see A370638, A370639, complement A370589.
A006530 gives greatest prime factor, least A020639.
A027746 lists prime factors, indices A112798, length A001222.
A355741 counts choices of a prime factor of each prime index.
A367902 counts choosable set-systems, ranks A367906, unlabeled A368095.
A367903 counts non-choosable set-systems, ranks A367907, unlabeled A368094.
A368098 counts choosable unlabeled multiset partitions, complement A368097.
A368100 ranks choosable multisets, complement A355529.
A368414 counts choosable factorizations, complement A368413.
A370585 counts maximal choosable sets.
A370592 counts choosable partitions, complement A370593.
A370636 counts choosable subsets for binary indices, complement A370637.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n]],MemberQ[#,n] && Length[Select[Tuples[If[#==1,{},First/@FactorInteger[#]]&/@#], UnsameQ@@#&]]==1&]],{n,0,10}]

Extensions

More terms from Jinyuan Wang, Mar 28 2025

A370590 Number of maximal subsets of {1..n} containing n such that it is possible to choose a different prime factor of each element (choosable).

Original entry on oeis.org

0, 0, 1, 1, 1, 2, 3, 5, 2, 4, 14, 25, 13, 38, 46, 66, 28, 178, 57, 235, 106, 238, 656, 1235, 288, 445, 2192, 664, 2016, 6840, 2300, 9140, 888, 6236, 17692, 14724, 7320, 56000, 60472, 70252, 37160, 223884, 66428, 290312, 113172, 80544, 517392, 1001420, 114336
Offset: 0

Views

Author

Gus Wiseman, Feb 28 2024

Keywords

Comments

For example, the set {4,7,9,10} has choice (2,7,3,5) so is counted under a(10).

Examples

			The a(0) = 0 through a(10) = 14 subsets (A = 10):
  .  .  2  23  34  235  256  2357  3578  2579  237A
                   345  356  2567  5678  4579  267A
                        456  3457        5679  279A
                             3567        5789  347A
                             4567              357A
                                               367A
                                               378A
                                               467A
                                               479A
                                               567A
                                               579A
                                               678A
                                               679A
                                               789A
		

Crossrefs

Not requiring n gives A370585, maximal case of A370582, complement A370583.
Maximal case of A370586, complement A370587, unique A370588.
An opposite version is A370591.
A006530 gives greatest prime factor, least A020639.
A027746 lists prime factors, indices A112798, length A001222.
A355741 counts choices of a prime factor of each prime index.
A367902 counts choosable set-systems, ranks A367906, unlabeled A368095.
A367903 counts non-choosable set-systems, ranks A367907, unlabeled A368094.
A368098 counts choosable unlabeled multiset partitions, complement A368097.
A368100 ranks choosable multisets, complement A355529.
A368414 counts choosable factorizations, complement A368413.
A370592 counts choosable partitions, complement A370593.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n],{PrimePi[n]}],MemberQ[#,n]&&Length[Select[Tuples[If[#==1,{},First/@FactorInteger[#]]&/@#],UnsameQ@@#&]]>0&]],{n,0,10}]

Extensions

More terms from Jinyuan Wang, Feb 14 2025

A381807 Number of multisets that can be obtained by choosing a constant partition of each m = 0..n and taking the multiset union.

Original entry on oeis.org

1, 1, 2, 4, 12, 24, 92, 184, 704, 2016, 7600, 15200, 80664, 161328, 601696, 2198824, 9868544, 19737088, 102010480, 204020960
Offset: 0

Views

Author

Gus Wiseman, Mar 13 2025

Keywords

Comments

A constant partition is a multiset whose parts are all equal. There are A000005(n) constant partitions of n.

Examples

			The a(1) = 1 through a(4) = 12 multisets:
  {1}  {1,2}    {1,2,3}        {1,2,3,4}
       {1,1,1}  {1,1,1,3}      {1,1,1,3,4}
                {1,1,1,1,2}    {1,2,2,2,3}
                {1,1,1,1,1,1}  {1,1,1,1,2,4}
                               {1,1,1,2,2,3}
                               {1,1,1,1,1,1,4}
                               {1,1,1,1,1,2,3}
                               {1,1,1,1,2,2,2}
                               {1,1,1,1,1,1,1,3}
                               {1,1,1,1,1,1,2,2}
                               {1,1,1,1,1,1,1,1,2}
                               {1,1,1,1,1,1,1,1,1,1}
		

Crossrefs

The number of possible choices was A066843.
Multiset partitions into constant blocks: A006171, A279784, A295935.
Choosing prime factors: A355746, A355537, A327486, A355744, A355742, A355741.
Choosing divisors: A355747, A355733.
Sets of constant multisets with distinct sums: A381635, A381636, A381716.
Strict instead of constant partitions: A381808, A058694, A152827.
A000041 counts integer partitions, strict A000009, constant A000005.
A000688 counts multiset partitions into constant blocks.
A050361 and A381715 count multiset partitions into constant multisets.
A066723 counts partitions coarser than {1..n}, primorial case of A317141.
A265947 counts refinement-ordered pairs of integer partitions.
A321470 counts partitions finer than {1..n}, primorial case of A300383.

Programs

  • Mathematica
    Table[Length[Union[Sort/@Join@@@Tuples[Select[IntegerPartitions[#],SameQ@@#&]&/@Range[n]]]],{n,0,10}]

Formula

Primorial case of A381453: a(n) = A381453(A002110(n)).

Extensions

a(16)-a(19) from Christian Sievers, Jun 04 2025

A381808 Number of multisets that can be obtained by choosing a strict integer partition of m for each m = 0..n and taking the multiset union.

Original entry on oeis.org

1, 1, 1, 2, 4, 12, 38, 145, 586, 2619, 12096, 58370, 285244, 1436815, 7281062, 37489525, 193417612
Offset: 0

Views

Author

Gus Wiseman, Mar 14 2025

Keywords

Examples

			The a(1) = 1 through a(5) = 12 multisets:
  {1}  {1,2}  {1,2,3}    {1,2,3,4}      {1,2,3,4,5}
              {1,1,2,2}  {1,1,2,2,4}    {1,1,2,2,4,5}
                         {1,1,2,3,3}    {1,1,2,3,3,5}
                         {1,1,1,2,2,3}  {1,1,2,3,4,4}
                                        {1,2,2,3,3,4}
                                        {1,1,1,2,2,3,5}
                                        {1,1,1,2,2,4,4}
                                        {1,1,1,2,3,3,4}
                                        {1,1,2,2,2,3,4}
                                        {1,1,2,2,3,3,3}
                                        {1,1,1,1,2,2,3,4}
                                        {1,1,1,2,2,2,3,3}
		

Crossrefs

Set systems: A050342, A116539, A296120, A318361.
The number of possible choices was A152827, non-strict A058694.
Set multipartitions with distinct sums: A279785, A381718.
Choosing prime factors: A355746, A355537, A327486, A355744, A355742, A355741.
Choosing divisors: A355747, A355733.
Constant instead of strict partitions: A381807, A066843.
A000041 counts integer partitions, strict A000009, constant A000005.
A066723 counts partitions coarser than {1..n}, primorial case of A317141.
A265947 counts refinement-ordered pairs of integer partitions.
A321470 counts partitions finer than {1..n}, primorial case of A300383.

Programs

  • Mathematica
    Table[Length[Union[Sort/@Join@@@Tuples[Select[IntegerPartitions[#],UnsameQ@@#&]&/@Range[n]]]],{n,0,10}]

Extensions

a(12)-a(16) from Christian Sievers, Jun 04 2025
Previous Showing 51-55 of 55 results.