A358584
Number of rooted trees with n nodes, at most half of which are leaves.
Original entry on oeis.org
0, 1, 1, 3, 5, 15, 28, 87, 176, 550, 1179, 3688, 8269, 25804, 59832, 186190, 443407, 1375388, 3346702, 10348509, 25632265, 79020511, 198670299, 610740694, 1555187172, 4768244803, 12276230777, 37546795678, 97601239282, 297831479850, 780790439063, 2377538260547
Offset: 1
The a(2) = 1 through a(6) = 15 trees:
(o) ((o)) ((oo)) (((oo))) (((ooo)))
(o(o)) ((o)(o)) ((o)(oo))
(((o))) ((o(o))) ((o(oo)))
(o((o))) ((oo(o)))
((((o)))) (o((oo)))
(o(o)(o))
(o(o(o)))
(oo((o)))
((((oo))))
(((o)(o)))
(((o(o))))
((o)((o)))
((o((o))))
(o(((o))))
(((((o)))))
A358575 counts rooted trees by nodes and internal nodes, ordered
A090181.
-
art[n_]:=If[n==1,{{}},Join@@Table[Select[Tuples[art/@c],OrderedQ],{c,Join@@Permutations/@IntegerPartitions[n-1]}]];
Table[Length[Select[art[n],Count[#,{},{0,Infinity}]<=Count[#,[_],{0,Infinity}]&]],{n,0,10}]
-
R(n) = {my(A = O(x)); for(j=1, n, A = x*(y - 1 + exp( sum(i=1, j, 1/i * subst( subst( A + O(x*x^(j\i)), x, x^i), y, y^i) ) ))); Vec(A)};
seq(n) = {my(A=R(n)); vector(n, n, vecsum(Vecrev(A[n]/y)[1..n\2]))} \\ Andrew Howroyd, Dec 30 2022
A358582
Number of rooted trees with n nodes, most of which are not leaves.
Original entry on oeis.org
0, 0, 1, 1, 5, 7, 28, 48, 176, 336, 1179, 2420, 8269, 17855, 59832, 134289, 443407, 1025685, 3346702, 7933161, 25632265, 62000170, 198670299, 488801159, 1555187172, 3882403641, 12276230777, 31034921462, 97601239282, 249471619165, 780790439063, 2015194486878
Offset: 1
The a(3) = 1 through a(6) = 7 trees:
((o)) (((o))) (((oo))) ((((oo))))
((o)(o)) (((o)(o)))
((o(o))) (((o(o))))
(o((o))) ((o)((o)))
((((o)))) ((o((o))))
(o(((o))))
(((((o)))))
A358575 counts rooted trees by nodes and internal nodes, ordered
A090181.
-
art[n_]:=If[n==1,{{}},Join@@Table[Select[Tuples[art/@c],OrderedQ],{c,Join@@Permutations/@IntegerPartitions[n-1]}]];
Table[Length[Select[art[n],Count[#,{},{0,Infinity}][_],{0,Infinity}]&]],{n,0,10}]
-
\\ See A358584 for R(n).
seq(n) = {my(A=R(n)); vector(n, n, vecsum(Vecrev(A[n]/y)[1..(n-1)\2]))} \\ Andrew Howroyd, Dec 30 2022
A358585
Number of ordered rooted trees with n nodes, most of which are leaves.
Original entry on oeis.org
1, 0, 1, 1, 7, 11, 66, 127, 715, 1549, 8398, 19691, 104006, 258194, 1337220, 3467115, 17678835, 47440745, 238819350, 659060677, 3282060210, 9271024542, 45741281820, 131788178171, 644952073662, 1890110798926, 9183676536076, 27316119923002, 131873975875180, 397407983278484
Offset: 1
The a(1) = 1 through a(6) = 11 ordered trees:
o . (oo) (ooo) (oooo) (ooooo)
((o)oo) ((o)ooo)
((oo)o) ((oo)oo)
((ooo)) ((ooo)o)
(o(o)o) ((oooo))
(o(oo)) (o(o)oo)
(oo(o)) (o(oo)o)
(o(ooo))
(oo(o)o)
(oo(oo))
(ooo(o))
The opposite is the same, unordered
A358582.
A001263 counts ordered rooted trees by nodes and leaves, unordered
A055277.
A080936 counts ordered rooted trees by nodes and height, unordered
A034781.
A090181 counts ordered rooted trees by nodes and internals, unord.
A358575.
-
aot[n_]:=If[n==1,{{}},Join@@Table[Tuples[aot/@c],{c,Join@@Permutations/@IntegerPartitions[n-1]}]];
Table[Length[Select[aot[n],Count[#,{},{0,Infinity}]>Count[#,[_],{0,Infinity}]&]],{n,10}]
-
a(n) = if(n==1, 1, n--; (binomial(2*n,n)/(n+1) - if(n%2, binomial(n, (n-1)/2)^2 / n))/2) \\ Andrew Howroyd, Jan 13 2024
A358583
Number of rooted trees with n nodes, at least half of which are leaves.
Original entry on oeis.org
1, 1, 1, 3, 4, 13, 20, 67, 110, 383, 663, 2346, 4217, 15118, 27979, 101092, 191440, 695474, 1341974, 4893067, 9589567, 35055011, 69612556, 254923825, 511987473, 1877232869, 3807503552, 13972144807, 28585315026, 104955228432, 216381073935, 794739865822
Offset: 1
The a(1) = 1 through a(6) = 13 trees:
o (o) (oo) (ooo) (oooo) (ooooo)
((oo)) ((ooo)) ((oooo))
(o(o)) (o(oo)) (o(ooo))
(oo(o)) (oo(oo))
(ooo(o))
(((ooo)))
((o)(oo))
((o(oo)))
((oo(o)))
(o((oo)))
(o(o)(o))
(o(o(o)))
(oo((o)))
A358575 counts rooted trees by nodes and internal nodes, ordered
A090181.
-
art[n_]:=If[n==1,{{}},Join@@Table[Select[Tuples[art/@c],OrderedQ],{c,Join@@Permutations/@IntegerPartitions[n-1]}]];
Table[Length[Select[art[n],Count[#,{},{0,Infinity}]>=Count[#,[_],{0,Infinity}]&]],{n,1,10}]
-
\\ See A358584 for R(n).
seq(n) = {my(A=R(n)); vector(n, n, my(u=Vecrev(A[n]/y)); vecsum(u[(n-1)\2+1..#u]))} \\ Andrew Howroyd, Dec 31 2022