A360456
Number of integer partitions of n for which the parts have the same median as the multiplicities.
Original entry on oeis.org
1, 1, 0, 0, 1, 0, 0, 1, 2, 5, 7, 10, 14, 21, 28, 36, 51, 64, 84, 106, 132, 165, 202, 252, 311, 391, 473, 579, 713, 868, 1069, 1303, 1617, 1954, 2404, 2908, 3556, 4282, 5200, 6207, 7505, 8934, 10700, 12717, 15165, 17863, 21222, 24976, 29443, 34523, 40582, 47415
Offset: 0
The a(1) = 1 through a(11) = 10 partitions:
1 . . 22 . . 2221 3311 333 4222 5222
32111 3222 33211 33221
32211 42211 52211
42111 43111 53111
321111 52111 62111
421111 322211
3211111 431111
521111
4211111
32111111
These partitions have ranks
A360454.
A008284 counts partitions by number of parts.
-
Table[Length[Select[IntegerPartitions[n], Median[Length/@Split[#]]==Median[#]&]],{n,0,30}]
A360669
Nonprime numbers > 1 for which the prime indices have the same mean as their first differences.
Original entry on oeis.org
10, 39, 68, 115, 138, 259, 310, 328, 387, 517, 574, 636, 793, 795, 1034, 1168, 1206, 1241, 1281, 1340, 1534, 1691, 1825, 2212, 2278, 2328, 2343, 2369, 2370, 2727, 2774, 2905, 3081, 3277, 3818, 3924, 4064, 4074, 4247, 4268, 4360, 4539, 4850, 4905, 5243, 5335
Offset: 1
The terms together with their prime indices begin:
1: {}
10: {1,3}
39: {2,6}
68: {1,1,7}
115: {3,9}
138: {1,2,9}
259: {4,12}
310: {1,3,11}
328: {1,1,1,13}
387: {2,2,14}
517: {5,15}
574: {1,4,13}
636: {1,1,2,16}
For example, the prime indices of 138 are {1,2,9}, with mean 4, and with first differences (1,7), with mean also 4, so 138 is in the sequence.
These partitions are counted by
A360670.
A301987 lists numbers whose sum of prime indices equals their product.
A316413 lists numbers whose prime indices have integer mean.
A334201 adds up all prime indices except the greatest.
A360614/
A360615 = mean of first differences of 0-prepended prime indices.
-
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[2,1000],Mean[prix[#]]==Mean[Differences[prix[#]]]&]
A361854
Number of strict integer partitions of n such that (length) * (maximum) = 2n.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 2, 0, 1, 2, 2, 0, 5, 0, 6, 3, 5, 0, 11, 6, 8, 7, 10, 0, 36, 0, 14, 16, 16, 29, 43, 0, 21, 36, 69, 0, 97, 0, 35, 138, 33, 0, 150, 61, 137, 134, 74, 0, 231, 134, 265, 229, 56, 0, 650, 0, 65, 749, 267, 247, 533, 0, 405, 565
Offset: 1
The a(n) strict partitions for selected n (A..E = 10..14):
n=9: n=12: n=14: n=15: n=16: n=18: n=20: n=21: n=22:
--------------------------------------------------------------
621 831 7421 A32 8431 C42 A532 E43 B542
6321 A41 8521 C51 A541 E52 B632
9432 A631 E61 B641
9531 A721 B731
9621 85421 B821
86321
The a(20) = 6 strict partitions are: (10,7,2,1), (10,6,3,1), (10,5,4,1), (10,5,3,2), (8,6,3,2,1), (8,5,4,2,1).
The strict partition y = (8,5,4,2,1) has diagram:
o o o o o o o o
o o o o o . . .
o o o o . . . .
o o . . . . . .
o . . . . . . .
Since the partition and its complement (shown in dots) have the same size, y is counted under a(20).
A008289 counts strict partitions by length.
A102627 counts strict partitions with integer mean, non-strict
A067538.
A116608 counts partitions by number of distinct parts.
Cf.
A111907,
A237755,
A240850,
A326849 A359897,
A360068,
A360071,
A360243,
A361848,
A361851,
A361852,
A361906.
A360690
Number of integer partitions of n with non-integer median of multiplicities.
Original entry on oeis.org
0, 0, 0, 1, 2, 2, 5, 6, 8, 8, 14, 12, 21, 20, 31, 36, 57, 61, 94, 108, 157, 188, 261, 305, 409, 484, 632, 721, 942, 1083, 1376, 1585, 2004, 2302, 2860, 3304, 4103, 4742, 5849, 6745, 8281, 9599, 11706, 13605, 16481, 19176, 23078, 26838, 32145, 37387, 44465
Offset: 1
The a(1) = 0 through a(9) = 8 partitions:
. . . (211) (221) (411) (322) (332) (441)
(311) (21111) (331) (422) (522)
(511) (611) (711)
(22111) (22211) (22221)
(31111) (41111) (33111)
(2111111) (51111)
(2211111)
(3111111)
For example, the partition y = (3,2,2,1) has multiplicities (1,2,1), and the multiset {1,1,2} has median 1, so y is not counted under a(8).
These partitions have ranks
A360554.
A360069 = partitions with integer mean of multiplicities, ranks
A067340.
A360070
Numbers for which there exists an integer partition such that the parts have the same mean as the multiplicities.
Original entry on oeis.org
1, 4, 8, 9, 12, 16, 18, 20, 25, 27, 32, 36, 45, 48, 49, 50, 54, 63, 64, 72, 75, 80, 81, 90, 96, 98, 99, 100, 108, 112, 117, 121, 125, 128, 144, 147, 150, 160, 162, 169, 175, 176, 180, 192, 196, 200, 208, 216, 224, 225, 240, 242, 243, 245, 250, 252, 256, 272
Offset: 1
A partition of 20 with the same mean as its multiplicities is (5,4,3,2,1,1,1,1,1,1), so 20 is in the sequence.
A360670
Number of integer partitions of n whose parts have the same mean as their negated first differences.
Original entry on oeis.org
1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 2, 0, 0, 1, 2, 0, 2, 0, 2, 2, 0, 0, 5, 1, 0, 3, 3, 0, 4, 0, 5, 3, 0, 2, 10, 0, 0, 4, 10, 0, 5, 0, 7, 9, 0, 0, 17, 1, 6, 5, 10, 0, 9, 8, 14, 6, 0, 0, 34, 0, 0, 9, 18, 13, 13, 0, 17, 7, 19, 0, 40, 0, 0, 28
Offset: 0
The a(n) partitions for n = 4, 12, 24, 27, 30, 44:
(3,1) (9,3) (18,6) (19,7,1) (21,8,1) (33,11)
(9,2,1) (17,6,1) (20,5,2) (22,6,2) (34,5,4,1)
(18,4,2) (21,3,3) (23,4,3) (34,6,3,1)
(19,2,2,1) (25,2,1,1,1) (34,7,2,1)
(19,3,1,1) (34,8,1,1)
(35,4,3,2)
(35,5,2,2)
For example, the partition y = (28,4,3,1), with mean 9, has negated first differences (24,2,1), with mean 9, so y is counted under a(36).
These partitions have ranks
A360669.
A360614/
A360615 = mean of first differences of 0-prepended prime indices.
-
Table[Length[Select[IntegerPartitions[n], Mean[#]==Mean[Differences[Reverse[#]]]&]],{n,0,30}]
A360680
Numbers for which the prime signature has the same mean as the first differences of 0-prepended prime indices.
Original entry on oeis.org
1, 2, 6, 30, 49, 152, 210, 513, 1444, 1776, 1952, 2310, 2375, 2664, 2760, 2960, 3249, 3864, 3996, 4140, 4144, 5796, 5994, 6072, 6210, 6440, 6512, 6517, 6900, 7176, 7400, 7696, 8694, 9025, 9108, 9384, 10064, 10120, 10350, 10488, 10764, 11248, 11960, 12167
Offset: 1
The terms together with their prime indices begin:
1: {}
2: {1}
6: {1,2}
30: {1,2,3}
49: {4,4}
152: {1,1,1,8}
210: {1,2,3,4}
513: {2,2,2,8}
1444: {1,1,8,8}
1776: {1,1,1,1,2,12}
1952: {1,1,1,1,1,18}
2310: {1,2,3,4,5}
2375: {3,3,3,8}
2664: {1,1,1,2,2,12}
2760: {1,1,1,2,3,9}
2960: {1,1,1,1,3,12}
For example, the prime indices of 2760 are {1,1,1,2,3,9}. The signature is (3,1,1,1), with mean 3/2. The first differences of 0-prepended prime indices are (1,0,0,1,1,6), with mean also 3/2. So 2760 is in the sequence.
For indices instead of 0-prepended differences:
A359903, counted by
A360068.
For median instead of mean we have
A360681.
A316413 = numbers whose prime indices have integer mean, complement
A348551.
A360614/
A360615 = mean of first differences of 0-prepended prime indices.
-
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[1000],Mean[Length/@Split[prix[#]]] == Mean[Differences[Prepend[prix[#],0]]]&]
A360683
Number of integer partitions of n whose second differences sum to 0, meaning either there is only one part, or the first two parts have the same difference as the last two parts.
Original entry on oeis.org
1, 1, 2, 3, 4, 4, 8, 6, 11, 12, 17, 14, 32, 23, 40, 44, 64, 59, 104, 93, 149, 157, 218, 227, 342, 349, 481, 538, 713, 777, 1052, 1145, 1494, 1692, 2130, 2416, 3064, 3449, 4286, 4918, 6028, 6882, 8424, 9620, 11634, 13396, 16022, 18416, 22019, 25248, 29954
Offset: 0
The a(1) = 1 through a(8) = 11 partitions:
(1) (2) (3) (4) (5) (6) (7) (8)
(11) (21) (22) (32) (33) (43) (44)
(111) (31) (41) (42) (52) (53)
(1111) (11111) (51) (61) (62)
(222) (22111) (71)
(321) (1111111) (2222)
(2211) (3221)
(111111) (3311)
(22211)
(221111)
(11111111)
For mean instead of sum we have a(n) -
A008619(n).
For median instead of sum we have
A360682.
A008284 counts partitions by number of parts.
-
Table[Length[Select[IntegerPartitions[n],Total[Differences[#,2]]==0&]],{n,0,30}]
A361862
Number of integer partitions of n such that (maximum) - (minimum) = (mean).
Original entry on oeis.org
0, 0, 0, 1, 0, 1, 0, 3, 2, 2, 0, 7, 0, 3, 6, 10, 0, 13, 0, 17, 10, 5, 0, 40, 12, 6, 18, 34, 0, 62, 0, 50, 24, 8, 60, 125, 0, 9, 32, 169, 0, 165, 0, 95, 176, 11, 0, 373, 114, 198, 54, 143, 0, 384, 254, 574, 66, 14, 0, 1090, 0, 15, 748, 633, 448, 782, 0, 286
Offset: 1
The a(4) = 1 through a(12) = 7 partitions:
(31) . (321) . (62) (441) (32221) . (93)
(3221) (522) (33211) (642)
(3311) (4431)
(5322)
(322221)
(332211)
(333111)
The partition y = (4,4,3,1) has maximum 4 and minimum 1 and mean 3, and 4 - 1 = 3, so y is counted under a(12). The diagram of y is:
o o o o
o o o o
o o o .
o . . .
Both the rectangle from the left and the complement have size 4.
Positions of zeros are 1 and
A000040.
For length instead of mean we have
A237832.
For minimum instead of mean we have
A118096.
These partitions have ranks
A362047.
A067538 counts partitions with integer mean.
A097364 counts partitions by (maximum) - (minimum).
A243055 subtracts the least prime index from the greatest.
A326844 gives the diagram complement size of Heinz partition.
Cf.
A237984,
A240219,
A326836,
A326837,
A327482,
A237755,
A237824,
A349156,
A359360,
A360068,
A360241,
A361853.
A363220
Number of integer partitions of n whose conjugate has the same median.
Original entry on oeis.org
1, 0, 1, 1, 1, 3, 3, 8, 8, 12, 12, 15, 21, 27, 36, 49, 65, 85, 112, 149, 176, 214, 257, 311, 378, 470, 572, 710, 877, 1080, 1322, 1637, 1983, 2416, 2899, 3465, 4107, 4891, 5763, 6820, 8071, 9542, 11289, 13381, 15808, 18710, 22122, 26105, 30737, 36156, 42377
Offset: 1
The partition y = (4,3,1,1) has median 2, and its conjugate (4,2,2,1) also has median 2, so y is counted under a(9).
The a(1) = 1 through a(9) = 8 partitions:
(1) . (21) (22) (311) (321) (511) (332) (333)
(411) (4111) (422) (711)
(3111) (31111) (611) (4221)
(3311) (4311)
(4211) (6111)
(5111) (51111)
(41111) (411111)
(311111) (3111111)
For mean instead of median we have
A047993.
Median of conjugate by rank is
A363219.
These partitions are ranked by
A363261.
A122111 represents partition conjugation.
A325347 counts partitions with integer median.
A352491 gives n minus Heinz number of conjugate.
Cf.
A000975,
A067538,
A114638,
A360068,
A360242,
A360248,
A362617,
A362618,
A362621,
A363223,
A363260.
-
conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
Table[Length[Select[IntegerPartitions[n],Median[#]==Median[conj[#]]&]],{n,30}]
Comments