cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-28 of 28 results.

A362620 Numbers whose greatest prime factor is not a mode, meaning it appears fewer times than some other.

Original entry on oeis.org

12, 20, 24, 28, 40, 44, 45, 48, 52, 56, 60, 63, 68, 72, 76, 80, 84, 88, 90, 92, 96, 99, 104, 112, 116, 117, 120, 124, 126, 132, 135, 136, 140, 144, 148, 152, 153, 156, 160, 164, 168, 171, 172, 175, 176, 180, 184, 188, 189, 192, 198, 200, 204, 207, 208, 212
Offset: 1

Views

Author

Gus Wiseman, May 11 2023

Keywords

Comments

First differs from A112769 in lacking 300.

Examples

			The prime factorization of 90 is 2*3*3*5, with modes {3} and maximum 5, so 90 is in the sequence.
		

Crossrefs

Partitions of this type are counted by A240302.
The complement is A362619, counted by A171979.
A027746 lists prime factors, A112798 indices, length A001222, sum A056239.
A356862 ranks partitions with a unique mode, counted by A362608.
A359178 ranks partitions with a unique co-mode, counted by A362610.
A362605 ranks partitions with a more than one mode, counted by A362607.
A362606 ranks partitions with a more than one co-mode, counted by A362609.
A362611 counts modes in prime factorization, triangle version A362614.
A362613 counts co-modes in prime factorization, triangle version A362615.
A362621 ranks partitions with median equal to maximum, counted by A053263.

Programs

  • Maple
    filter:= proc(n) local F;
      F:= sort(ifactors(n)[2], (a,b) -> a[1]Robert Israel, Dec 15 2023
  • Mathematica
    prifacs[n_]:=If[n==1,{},Flatten[ConstantArray@@@FactorInteger[n]]];
    Select[Range[2,100],FreeQ[Commonest[prifacs[#]],Max[prifacs[#]]]&]

A364062 Number of integer partitions of n with unique co-mode 1.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 1, 3, 2, 3, 3, 6, 2, 8, 6, 9, 6, 16, 7, 21, 12, 23, 18, 39, 17, 47, 32, 59, 40, 86, 44, 110, 72, 131, 95, 188, 103, 233, 166, 288, 201, 389, 244, 490, 347, 587, 440, 794, 524, 974, 727, 1187, 903, 1547, 1106, 1908, 1459, 2303, 1826, 2979, 2198
Offset: 0

Views

Author

Gus Wiseman, Jul 12 2023

Keywords

Comments

These are partitions with at least one 1 but with fewer 1's than each of the other parts.
We define a co-mode in a multiset to be an element that appears at most as many times as each of the other elements. For example, the co-modes of {a,a,b,b,b,c,c} are {a,c}.

Examples

			The a(n) partitions for n = 5, 7, 11, 13, 15:
  (221)    (331)      (551)          (661)            (771)
  (11111)  (2221)     (33221)        (4441)           (44331)
           (1111111)  (33311)        (33331)          (55221)
                      (222221)       (44221)          (442221)
                      (2222111)      (332221)         (3322221)
                      (11111111111)  (2222221)        (3333111)
                                     (22222111)       (22222221)
                                     (1111111111111)  (222222111)
                                                      (111111111111111)
		

Crossrefs

For high (or unique) mode we have A241131, ranks A360013.
For low mode we have A241131, ranks A360015.
Allowing any unique co-mode gives A362610, ranks A359178.
These partitions have ranks A364061.
Adding all 1-free partitions gives A364159, ranks A364158.
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by length (or decreasing mean), strict A008289.
A237984 counts partitions containing their mean, ranks A327473.
A327472 counts partitions not containing their mean, ranks A327476.
A362608 counts partitions w/ unique mode, ranks A356862, complement A362605.
A362611 counts modes in prime indices, triangle A362614.
A362613 counts co-modes in prime indices, triangle A362615.
A363486 gives least mode in prime indices, A363487 greatest.

Programs

  • Mathematica
    comodes[ms_]:=Select[Union[ms],Count[ms,#]<=Min@@Length/@Split[ms]&];
    Table[Length[Select[IntegerPartitions[n],comodes[#]=={1}&]],{n,0,30}]

A364158 Numbers whose multiset of prime factors has low (i.e. least) co-mode 2.

Original entry on oeis.org

1, 2, 4, 6, 8, 10, 14, 16, 18, 22, 26, 30, 32, 34, 36, 38, 42, 46, 50, 54, 58, 62, 64, 66, 70, 74, 78, 82, 86, 90, 94, 98, 100, 102, 106, 108, 110, 114, 118, 122, 126, 128, 130, 134, 138, 142, 146, 150, 154, 158, 162, 166, 170, 174, 178, 182, 186, 190, 194
Offset: 1

Views

Author

Gus Wiseman, Jul 14 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
We define a co-mode in a multiset to be an element that appears at most as many times as each of the others. For example, the co-modes in {a,a,b,b,b,c,c} are {a,c}.
Except for 1, this is the lists of all even numbers whose prime factorization contains at most as many 2's as non-2 parts.
Extending the terminology of A124943, the "low co-mode" of a multiset is the least co-mode.

Examples

			The terms together with their prime factorizations begin:
   1 =
   2 = 2
   4 = 2*2
   6 = 2*3
   8 = 2*2*2
  10 = 2*5
  14 = 2*7
  16 = 2*2*2*2
  18 = 2*3*3
  22 = 2*11
  26 = 2*13
  30 = 2*3*5
  32 = 2*2*2*2*2
  34 = 2*17
  36 = 2*2*3*3
		

Crossrefs

Partitions of this type are counted by A364159.
Positions of 1's in A364191, high A364192, modes A363486, high A363487.
For median we have A363488, positions of 1 in A363941, triangle A124943.
For mode instead of co-mode we have A360015, counted by A241131.
A027746 lists prime factors (with multiplicity), length A001222.
A362611 counts modes in prime factorization, triangle A362614
A362613 counts co-modes in prime factorization, triangle A362615
Ranking partitions:
- A356862: unique mode, counted by A362608
- A359178: unique co-mode, counted by A362610
- A362605: multiple modes, counted by A362607
- A362606: multiple co-modes, counted by A362609

Programs

  • Mathematica
    prifacs[n_]:=If[n==1,{},Flatten[ConstantArray@@@FactorInteger[n]]];
    comodes[ms_]:=Select[Union[ms],Count[ms,#]<=Min@@Length/@Split[ms]&];
    Select[Range[100],#==1||Min[comodes[prifacs[#]]]==2&]

A364159 Number of integer partitions of n - 1 containing fewer 1's than any other part.

Original entry on oeis.org

0, 1, 1, 2, 2, 3, 4, 5, 7, 9, 11, 15, 20, 23, 32, 40, 50, 61, 82, 95, 126, 149, 188, 228, 292, 337, 430, 510, 633, 748, 933, 1083, 1348, 1579, 1925, 2262, 2761, 3197, 3893, 4544, 5458, 6354, 7634, 8835, 10577, 12261, 14546, 16864, 19990, 23043, 27226, 31428
Offset: 0

Views

Author

Gus Wiseman, Jul 16 2023

Keywords

Comments

Also integer partitions of n with least co-mode 1. Here, we define a co-mode in a multiset to be an element that appears at most as many times as each of the others. For example, the co-modes in {a,a,b,b,b,c,c} are {a,c}.

Examples

			The a(1) = 1 through a(8) = 7 partitions:
  (1)  (11)  (21)   (31)    (41)     (51)      (61)       (71)
             (111)  (1111)  (221)    (321)     (331)      (431)
                            (11111)  (2211)    (421)      (521)
                                     (111111)  (2221)     (3221)
                                               (1111111)  (3311)
                                                          (22211)
                                                          (11111111)
		

Crossrefs

For mode instead of co-mode we have A241131, ranks A360015.
The case with only one 1 is A364062, ranks A364061.
Counts partitions ranked by A364158.
Counts positions of 1's in A364191, high A364192.
A362611 counts modes in prime factorization, triangle A362614.
A362613 counts co-modes in prime factorization, triangle A362615.
Ranking and counting partitions:
- A356862 = unique mode, counted by A362608
- A359178 = unique co-mode, counted by A362610
- A362605 = multiple modes, counted by A362607
- A362606 = multiple co-modes, counted by A362609

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n-1],Count[#,1]
    				

A364191 Low co-mode in the multiset of prime indices of n.

Original entry on oeis.org

0, 1, 2, 1, 3, 1, 4, 1, 2, 1, 5, 2, 6, 1, 2, 1, 7, 1, 8, 3, 2, 1, 9, 2, 3, 1, 2, 4, 10, 1, 11, 1, 2, 1, 3, 1, 12, 1, 2, 3, 13, 1, 14, 5, 3, 1, 15, 2, 4, 1, 2, 6, 16, 1, 3, 4, 2, 1, 17, 2, 18, 1, 4, 1, 3, 1, 19, 7, 2, 1, 20, 2, 21, 1, 2, 8, 4, 1, 22, 3, 2, 1
Offset: 1

Views

Author

Gus Wiseman, Jul 16 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
We define a co-mode in a multiset to be an element that appears at most as many times as each of the others. For example, the co-modes in {a,a,b,b,b,c,c} are {a,c}.
Extending the terminology of A124943, the "low co-mode" in a multiset is the least co-mode.

Examples

			The prime indices of 2100 are {1,1,2,3,3,4}, with co-modes {2,4}, so a(2100) = 2.
		

Crossrefs

For prime factors instead of indices we have A067695, high A359612.
For mode instead of co-mode we have A363486, high A363487, triangle A363952.
For median instead of co-mode we have A363941, high A363942.
Positions of 1's are A364158, counted by A364159.
The high version is A364192 = positions of 1's in A364061.
A112798 lists prime indices, length A001222, sum A056239.
A362611 counts modes in prime indices, triangle A362614.
A362613 counts co-modes in prime indices, triangle A362615.
Ranking and counting partitions:
- A356862 = unique mode, counted by A362608
- A359178 = unique co-mode, counted by A362610
- A362605 = multiple modes, counted by A362607
- A362606 = multiple co-modes, counted by A362609

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    comodes[ms_]:=Select[Union[ms],Count[ms,#]<=Min@@Length/@Split[ms]&];
    Table[If[n==1,0,Min[comodes[prix[n]]]],{n,30}]

Formula

a(n) = A000720(A067695(n)).
A067695(n) = A000040(a(n)).

A364192 High (i.e., greatest) co-mode in the multiset of prime indices of n.

Original entry on oeis.org

0, 1, 2, 1, 3, 2, 4, 1, 2, 3, 5, 2, 6, 4, 3, 1, 7, 1, 8, 3, 4, 5, 9, 2, 3, 6, 2, 4, 10, 3, 11, 1, 5, 7, 4, 2, 12, 8, 6, 3, 13, 4, 14, 5, 3, 9, 15, 2, 4, 1, 7, 6, 16, 1, 5, 4, 8, 10, 17, 3, 18, 11, 4, 1, 6, 5, 19, 7, 9, 4, 20, 2, 21, 12, 2, 8, 5, 6, 22, 3, 2
Offset: 1

Views

Author

Gus Wiseman, Jul 16 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
We define a co-mode in a multiset to be an element that appears at most as many times as each of the others. For example, the co-modes in {a,a,b,b,b,c,c} are {a,c}.
Extending the terminology of A124943, the "high co-mode" in a multiset is the greatest co-mode.

Examples

			The prime indices of 2100 are {1,1,2,3,3,4}, with co-modes {2,4}, so a(2100) = 4.
		

Crossrefs

For prime factors instead of indices we have A359612, low A067695.
For mode instead of co-mode we have A363487 (triangle A363953), low A363486 (triangle A363952).
The version for median instead of co-mode is A363942, low A363941.
Positions of 1's are A364061, counted by A364062.
The low version is A364191, 1's at A364158 (counted by A364159).
A112798 lists prime indices, length A001222, sum A056239.
A362611 counts modes in prime indices, triangle A362614.
A362613 counts co-modes in prime indices, triangle A362615.
Ranking and counting partitions:
- A356862 = unique mode, counted by A362608
- A359178 = unique co-mode, counted by A362610
- A362605 = multiple modes, counted by A362607
- A362606 = multiple co-modes, counted by A362609

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    comodes[ms_]:=Select[Union[ms],Count[ms,#]<=Min@@Length/@Split[ms]&];
    Table[If[n==1,0,Max[comodes[prix[n]]]],{n,30}]

Formula

a(n) = A000720(A359612(n)).
A359612(n) = A000040(a(n)).

A364160 Numbers whose least prime factor has the greatest exponent.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 11, 12, 13, 16, 17, 19, 20, 23, 24, 25, 27, 28, 29, 31, 32, 37, 40, 41, 43, 44, 45, 47, 48, 49, 52, 53, 56, 59, 60, 61, 63, 64, 67, 68, 71, 72, 73, 76, 79, 80, 81, 83, 84, 88, 89, 92, 96, 97, 99, 101, 103, 104, 107, 109, 112, 113, 116
Offset: 1

Views

Author

Gus Wiseman, Jul 14 2023

Keywords

Comments

First differs from A334298 in having 600 and lacking 180.
Also numbers whose minimum part in prime factorization is a unique mode.
If k is a term, then so are all powers of k. - Robert Israel, Sep 17 2024

Examples

			The prime factorization of 600 is 2*2*2*3*5*5, and 3 > max(1,2), so 600 is in the sequence.
The prime factorization of 180 is 2*2*3*3*5, but 2 <= max(2,1), so 180 is not in the sequence.
The terms together with their prime indices begin:
     1: {}           29: {10}              67: {19}
     2: {1}          31: {11}              68: {1,1,7}
     3: {2}          32: {1,1,1,1,1}       71: {20}
     4: {1,1}        37: {12}              72: {1,1,1,2,2}
     5: {3}          40: {1,1,1,3}         73: {21}
     7: {4}          41: {13}              76: {1,1,8}
     8: {1,1,1}      43: {14}              79: {22}
     9: {2,2}        44: {1,1,5}           80: {1,1,1,1,3}
    11: {5}          45: {2,2,3}           81: {2,2,2,2}
    12: {1,1,2}      47: {15}              83: {23}
    13: {6}          48: {1,1,1,1,2}       84: {1,1,2,4}
    16: {1,1,1,1}    49: {4,4}             88: {1,1,1,5}
    17: {7}          52: {1,1,6}           89: {24}
    19: {8}          53: {16}              92: {1,1,9}
    20: {1,1,3}      56: {1,1,1,4}         96: {1,1,1,1,1,2}
    23: {9}          59: {17}              97: {25}
    24: {1,1,1,2}    60: {1,1,2,3}         99: {2,2,5}
    25: {3,3}        61: {18}             101: {26}
    27: {2,2,2}      63: {2,2,4}          103: {27}
    28: {1,1,4}      64: {1,1,1,1,1,1}    104: {1,1,1,6}
		

Crossrefs

Allowing any unique mode gives A356862, complement A362605.
Allowing any unique co-mode gives A359178, complement A362606.
The even case is A360013, counted by A241131.
For greatest instead of least we have A362616, counted by A362612.
These partitions are counted by A364193.
A027746 lists prime factors (with multiplicity).
A112798 lists prime indices, length A001222, sum A056239.
A362611 counts modes in prime factorization, triangle A362614.
A362613 counts co-modes in prime factorization, triangle A362615.
A363486 gives least mode in prime indices, A363487 greatest.

Programs

  • Maple
    filter:= proc(n) local F,i;
      F:= ifactors(n)[2];
      if nops(F) = 1 then return true fi;
      i:= min[index](F[..,1]);
      andmap(t -> F[t,2] < F[i,2], {$1..nops(F)} minus {i})
    end proc:
    filter(1):= true:
    select(filter, [$1..200]); # Robert Israel, Sep 17 2024
  • Mathematica
    Select[Range[100],First[Last/@FactorInteger[#]] > Max@@Rest[Last/@FactorInteger[#]]&]

A364193 Number of integer partitions of n where the least part is the unique mode.

Original entry on oeis.org

0, 1, 2, 2, 4, 4, 7, 9, 13, 17, 24, 32, 43, 58, 75, 97, 130, 167, 212, 274, 346, 438, 556, 695, 865, 1082, 1342, 1655, 2041, 2511, 3067, 3756, 4568, 5548, 6728, 8130, 9799, 11810, 14170, 16980, 20305, 24251, 28876, 34366, 40781, 48342, 57206, 67597, 79703
Offset: 0

Views

Author

Gus Wiseman, Jul 16 2023

Keywords

Comments

A mode in a multiset is an element that appears at least as many times as each of the others. For example, the modes in {a,a,b,b,b,c,d,d,d} are {b,d}.

Examples

			The a(1) = 1 through a(8) = 13 partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
       (11)  (111)  (22)    (311)    (33)      (322)      (44)
                    (211)   (2111)   (222)     (511)      (422)
                    (1111)  (11111)  (411)     (3211)     (611)
                                     (3111)    (4111)     (2222)
                                     (21111)   (22111)    (4211)
                                     (111111)  (31111)    (5111)
                                               (211111)   (32111)
                                               (1111111)  (41111)
                                                          (221111)
                                                          (311111)
                                                          (2111111)
                                                          (11111111)
		

Crossrefs

For greatest part and multiple modes we have A171979.
Allowing multiple modes gives A240303.
For greatest instead of least part we have A362612, ranks A362616.
For mean instead of least part we have A363723.
These partitions have ranks A364160.
A000041 counts integer partitions.
A362611 counts modes in prime factorization, A362613 co-modes.
A362614 counts partitions by number of modes, co-modes A362615.
A363486 gives least mode in prime indices, A363487 greatest.
A363952 counts partitions by low mode, A363953 high.
Ranking and counting partitions:
- A356862 = unique mode, counted by A362608
- A359178 = unique co-mode, counted by A362610
- A362605 = multiple modes, counted by A362607
- A362606 = multiple co-modes, counted by A362609

Programs

  • Mathematica
    Table[If[n==0,0,Length[Select[IntegerPartitions[n], Last[Length/@Split[#]]>Max@@Most[Length/@Split[#]]&]]],{n,0,30}]
Previous Showing 21-28 of 28 results.