cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-26 of 26 results.

A363722 Nonprime numbers whose prime indices satisfy (mean) = (median) = (mode), assuming there is a unique mode.

Original entry on oeis.org

4, 8, 9, 16, 25, 27, 32, 49, 64, 81, 90, 121, 125, 128, 169, 243, 256, 270, 289, 343, 361, 512, 525, 529, 550, 625, 729, 756, 810, 841, 961, 1024, 1331, 1369, 1666, 1681, 1849, 1911, 1950, 2048, 2187, 2197, 2209, 2268, 2401, 2430, 2625, 2695, 2700, 2750, 2809
Offset: 1

Views

Author

Gus Wiseman, Jun 24 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
A mode in a multiset is an element that appears at least as many times as each of the others. For example, the modes in {a,a,b,b,b,c,d,d,d} are {b,d}.
The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).

Examples

			The terms together with their prime indices begin:
     4: {1,1}
     8: {1,1,1}
     9: {2,2}
    16: {1,1,1,1}
    25: {3,3}
    27: {2,2,2}
    32: {1,1,1,1,1}
    49: {4,4}
    64: {1,1,1,1,1,1}
    81: {2,2,2,2}
    90: {1,2,2,3}
   121: {5,5}
   125: {3,3,3}
   128: {1,1,1,1,1,1,1}
		

Crossrefs

These partitions are counted by A363719 - 1 for n > 0.
Including primes gives A363727, counted by A363719.
For prime powers instead of just primes we have A363729, counted by A363728.
For unequal instead of equal we have A363730, counted by A363720.
A112798 lists prime indices, length A001222, sum A056239.
A326567/A326568 gives mean of prime indices.
A356862 ranks partitions with a unique mode, counted by A362608.
A359178 ranks partitions with multiple modes, counted by A362610.
A360005 gives twice the median of prime indices.
A362611 counts modes in prime indices, triangle A362614.
A362613 counts co-modes in prime indices, triangle A362615.
A363486 gives least mode in prime indices, A363487 greatest.
Just two statistics:
- (mean) = (median): A359889, counted by A240219.
- (mean) != (median): A359890, counted by A359894.
- (mean) = (mode): counted by A363723, see A363724, A363731.
- (median) = (mode): counted by A363740.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    modes[ms_]:=Select[Union[ms],Count[ms,#]>=Max@@Length/@Split[ms]&];
    Select[Range[100],!PrimeQ[#]&&{Mean[prix[#]]}=={Median[prix[#]]}==modes[prix[#]]&]

Formula

Complement of A000040 in A363727.
Assuming there is a unique mode, we have A326567(a(n))/A326568(a(n)) = A360005(a(n))/2 = A363486(a(n)) = A363487(a(n)).

A364191 Low co-mode in the multiset of prime indices of n.

Original entry on oeis.org

0, 1, 2, 1, 3, 1, 4, 1, 2, 1, 5, 2, 6, 1, 2, 1, 7, 1, 8, 3, 2, 1, 9, 2, 3, 1, 2, 4, 10, 1, 11, 1, 2, 1, 3, 1, 12, 1, 2, 3, 13, 1, 14, 5, 3, 1, 15, 2, 4, 1, 2, 6, 16, 1, 3, 4, 2, 1, 17, 2, 18, 1, 4, 1, 3, 1, 19, 7, 2, 1, 20, 2, 21, 1, 2, 8, 4, 1, 22, 3, 2, 1
Offset: 1

Views

Author

Gus Wiseman, Jul 16 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
We define a co-mode in a multiset to be an element that appears at most as many times as each of the others. For example, the co-modes in {a,a,b,b,b,c,c} are {a,c}.
Extending the terminology of A124943, the "low co-mode" in a multiset is the least co-mode.

Examples

			The prime indices of 2100 are {1,1,2,3,3,4}, with co-modes {2,4}, so a(2100) = 2.
		

Crossrefs

For prime factors instead of indices we have A067695, high A359612.
For mode instead of co-mode we have A363486, high A363487, triangle A363952.
For median instead of co-mode we have A363941, high A363942.
Positions of 1's are A364158, counted by A364159.
The high version is A364192 = positions of 1's in A364061.
A112798 lists prime indices, length A001222, sum A056239.
A362611 counts modes in prime indices, triangle A362614.
A362613 counts co-modes in prime indices, triangle A362615.
Ranking and counting partitions:
- A356862 = unique mode, counted by A362608
- A359178 = unique co-mode, counted by A362610
- A362605 = multiple modes, counted by A362607
- A362606 = multiple co-modes, counted by A362609

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    comodes[ms_]:=Select[Union[ms],Count[ms,#]<=Min@@Length/@Split[ms]&];
    Table[If[n==1,0,Min[comodes[prix[n]]]],{n,30}]

Formula

a(n) = A000720(A067695(n)).
A067695(n) = A000040(a(n)).

A364192 High (i.e., greatest) co-mode in the multiset of prime indices of n.

Original entry on oeis.org

0, 1, 2, 1, 3, 2, 4, 1, 2, 3, 5, 2, 6, 4, 3, 1, 7, 1, 8, 3, 4, 5, 9, 2, 3, 6, 2, 4, 10, 3, 11, 1, 5, 7, 4, 2, 12, 8, 6, 3, 13, 4, 14, 5, 3, 9, 15, 2, 4, 1, 7, 6, 16, 1, 5, 4, 8, 10, 17, 3, 18, 11, 4, 1, 6, 5, 19, 7, 9, 4, 20, 2, 21, 12, 2, 8, 5, 6, 22, 3, 2
Offset: 1

Views

Author

Gus Wiseman, Jul 16 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
We define a co-mode in a multiset to be an element that appears at most as many times as each of the others. For example, the co-modes in {a,a,b,b,b,c,c} are {a,c}.
Extending the terminology of A124943, the "high co-mode" in a multiset is the greatest co-mode.

Examples

			The prime indices of 2100 are {1,1,2,3,3,4}, with co-modes {2,4}, so a(2100) = 4.
		

Crossrefs

For prime factors instead of indices we have A359612, low A067695.
For mode instead of co-mode we have A363487 (triangle A363953), low A363486 (triangle A363952).
The version for median instead of co-mode is A363942, low A363941.
Positions of 1's are A364061, counted by A364062.
The low version is A364191, 1's at A364158 (counted by A364159).
A112798 lists prime indices, length A001222, sum A056239.
A362611 counts modes in prime indices, triangle A362614.
A362613 counts co-modes in prime indices, triangle A362615.
Ranking and counting partitions:
- A356862 = unique mode, counted by A362608
- A359178 = unique co-mode, counted by A362610
- A362605 = multiple modes, counted by A362607
- A362606 = multiple co-modes, counted by A362609

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    comodes[ms_]:=Select[Union[ms],Count[ms,#]<=Min@@Length/@Split[ms]&];
    Table[If[n==1,0,Max[comodes[prix[n]]]],{n,30}]

Formula

a(n) = A000720(A359612(n)).
A359612(n) = A000040(a(n)).

A364160 Numbers whose least prime factor has the greatest exponent.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 11, 12, 13, 16, 17, 19, 20, 23, 24, 25, 27, 28, 29, 31, 32, 37, 40, 41, 43, 44, 45, 47, 48, 49, 52, 53, 56, 59, 60, 61, 63, 64, 67, 68, 71, 72, 73, 76, 79, 80, 81, 83, 84, 88, 89, 92, 96, 97, 99, 101, 103, 104, 107, 109, 112, 113, 116
Offset: 1

Views

Author

Gus Wiseman, Jul 14 2023

Keywords

Comments

First differs from A334298 in having 600 and lacking 180.
Also numbers whose minimum part in prime factorization is a unique mode.
If k is a term, then so are all powers of k. - Robert Israel, Sep 17 2024

Examples

			The prime factorization of 600 is 2*2*2*3*5*5, and 3 > max(1,2), so 600 is in the sequence.
The prime factorization of 180 is 2*2*3*3*5, but 2 <= max(2,1), so 180 is not in the sequence.
The terms together with their prime indices begin:
     1: {}           29: {10}              67: {19}
     2: {1}          31: {11}              68: {1,1,7}
     3: {2}          32: {1,1,1,1,1}       71: {20}
     4: {1,1}        37: {12}              72: {1,1,1,2,2}
     5: {3}          40: {1,1,1,3}         73: {21}
     7: {4}          41: {13}              76: {1,1,8}
     8: {1,1,1}      43: {14}              79: {22}
     9: {2,2}        44: {1,1,5}           80: {1,1,1,1,3}
    11: {5}          45: {2,2,3}           81: {2,2,2,2}
    12: {1,1,2}      47: {15}              83: {23}
    13: {6}          48: {1,1,1,1,2}       84: {1,1,2,4}
    16: {1,1,1,1}    49: {4,4}             88: {1,1,1,5}
    17: {7}          52: {1,1,6}           89: {24}
    19: {8}          53: {16}              92: {1,1,9}
    20: {1,1,3}      56: {1,1,1,4}         96: {1,1,1,1,1,2}
    23: {9}          59: {17}              97: {25}
    24: {1,1,1,2}    60: {1,1,2,3}         99: {2,2,5}
    25: {3,3}        61: {18}             101: {26}
    27: {2,2,2}      63: {2,2,4}          103: {27}
    28: {1,1,4}      64: {1,1,1,1,1,1}    104: {1,1,1,6}
		

Crossrefs

Allowing any unique mode gives A356862, complement A362605.
Allowing any unique co-mode gives A359178, complement A362606.
The even case is A360013, counted by A241131.
For greatest instead of least we have A362616, counted by A362612.
These partitions are counted by A364193.
A027746 lists prime factors (with multiplicity).
A112798 lists prime indices, length A001222, sum A056239.
A362611 counts modes in prime factorization, triangle A362614.
A362613 counts co-modes in prime factorization, triangle A362615.
A363486 gives least mode in prime indices, A363487 greatest.

Programs

  • Maple
    filter:= proc(n) local F,i;
      F:= ifactors(n)[2];
      if nops(F) = 1 then return true fi;
      i:= min[index](F[..,1]);
      andmap(t -> F[t,2] < F[i,2], {$1..nops(F)} minus {i})
    end proc:
    filter(1):= true:
    select(filter, [$1..200]); # Robert Israel, Sep 17 2024
  • Mathematica
    Select[Range[100],First[Last/@FactorInteger[#]] > Max@@Rest[Last/@FactorInteger[#]]&]

A364193 Number of integer partitions of n where the least part is the unique mode.

Original entry on oeis.org

0, 1, 2, 2, 4, 4, 7, 9, 13, 17, 24, 32, 43, 58, 75, 97, 130, 167, 212, 274, 346, 438, 556, 695, 865, 1082, 1342, 1655, 2041, 2511, 3067, 3756, 4568, 5548, 6728, 8130, 9799, 11810, 14170, 16980, 20305, 24251, 28876, 34366, 40781, 48342, 57206, 67597, 79703
Offset: 0

Views

Author

Gus Wiseman, Jul 16 2023

Keywords

Comments

A mode in a multiset is an element that appears at least as many times as each of the others. For example, the modes in {a,a,b,b,b,c,d,d,d} are {b,d}.

Examples

			The a(1) = 1 through a(8) = 13 partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
       (11)  (111)  (22)    (311)    (33)      (322)      (44)
                    (211)   (2111)   (222)     (511)      (422)
                    (1111)  (11111)  (411)     (3211)     (611)
                                     (3111)    (4111)     (2222)
                                     (21111)   (22111)    (4211)
                                     (111111)  (31111)    (5111)
                                               (211111)   (32111)
                                               (1111111)  (41111)
                                                          (221111)
                                                          (311111)
                                                          (2111111)
                                                          (11111111)
		

Crossrefs

For greatest part and multiple modes we have A171979.
Allowing multiple modes gives A240303.
For greatest instead of least part we have A362612, ranks A362616.
For mean instead of least part we have A363723.
These partitions have ranks A364160.
A000041 counts integer partitions.
A362611 counts modes in prime factorization, A362613 co-modes.
A362614 counts partitions by number of modes, co-modes A362615.
A363486 gives least mode in prime indices, A363487 greatest.
A363952 counts partitions by low mode, A363953 high.
Ranking and counting partitions:
- A356862 = unique mode, counted by A362608
- A359178 = unique co-mode, counted by A362610
- A362605 = multiple modes, counted by A362607
- A362606 = multiple co-modes, counted by A362609

Programs

  • Mathematica
    Table[If[n==0,0,Length[Select[IntegerPartitions[n], Last[Length/@Split[#]]>Max@@Most[Length/@Split[#]]&]]],{n,0,30}]

A382856 Numbers whose prime indices do not have a mode of 1.

Original entry on oeis.org

1, 3, 5, 7, 9, 11, 13, 15, 17, 18, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 50, 51, 53, 54, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 90, 91, 93, 95, 97, 98, 99, 101, 103, 105, 107, 108, 109, 111, 113, 115
Offset: 1

Views

Author

Gus Wiseman, Apr 07 2025

Keywords

Examples

			The terms together with their prime indices begin:
   1: {}
   3: {2}
   5: {3}
   7: {4}
   9: {2,2}
  11: {5}
  13: {6}
  15: {2,3}
  17: {7}
  18: {1,2,2}
  19: {8}
  21: {2,4}
  23: {9}
  25: {3,3}
  27: {2,2,2}
		

Crossrefs

The case of non-unique mode is A024556.
The complement is A360015 except first.
Partitions of this type are are counted by A382526 except first, complement A241131.
A091602 counts partitions by the greatest multiplicity, rank statistic A051903.
A112798 lists prime indices, length A001222, sum A056239.
A116598 counts ones in partitions, rank statistic A007814.
A240312 counts partitions with max part = max multiplicity, ranks A381542.
A362611 counts modes in prime indices, triangle A362614.
For co-mode see A359178, A362613, A364061 (A364062), A364158 (A364159).

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],FreeQ[Commonest[prix[#]],1]&]
Previous Showing 21-26 of 26 results.