cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-17 of 17 results.

A367221 Number of strict integer partitions of n whose length (number of parts) cannot be written as a nonnegative linear combination of the parts.

Original entry on oeis.org

0, 0, 1, 1, 1, 1, 1, 2, 2, 3, 3, 5, 5, 7, 7, 10, 10, 13, 14, 17, 18, 23, 24, 29, 32, 37, 41, 49, 54, 63, 72, 82, 93, 108, 122, 139, 159, 180, 204, 231, 261, 293, 331, 370, 415, 464, 518, 575, 641, 710, 789, 871, 965, 1064, 1177, 1294, 1428, 1569, 1729, 1897
Offset: 0

Views

Author

Gus Wiseman, Nov 14 2023

Keywords

Comments

The non-strict version is A367219.

Examples

			The a(2) = 1 through a(16) = 10 strict partitions (A..G = 10..16):
  2  3  4  5  6  7   8   9   A   B    C    D    E    F    G
                 43  53  54  64  65   75   76   86   87   97
                         63  73  74   84   85   95   96   A6
                                 83   93   94   A4   A5   B5
                                 542  642  A3   B3   B4   C4
                                           652  752  C3   D3
                                           742  842  654  754
                                                     762  862
                                                     852  952
                                                     942  A42
		

Crossrefs

The following sequences count and rank integer partitions and finite sets according to whether their length is a subset-sum or linear combination of the parts. The current sequence is starred.
sum-full sum-free comb-full comb-free
-------------------------------------------
A000041 counts integer partitions, strict A000009.
A002865 counts partitions whose length is a part, complement A229816.
A124506 appears to count combination-free subsets, differences of A326083.
A188431 counts complete strict partitions, incomplete A365831.
A240855 counts strict partitions whose length is a part, complement A240861.
A364272 counts sum-full strict partitions, sum-free A364349.
Triangles:
A008284 counts partitions by length, strict A008289.
A046663 counts partitions of n without a subset-sum k, strict A365663.
A365541 counts subsets containing two distinct elements summing to k.
A365658 counts partitions by number of subset-sums, strict A365832.

Programs

  • Mathematica
    combs[n_,y_]:=With[{s=Table[{k,i},{k,y}, {i,0,Floor[n/k]}]}, Select[Tuples[s], Total[Times@@@#]==n&]];
    Table[Length[Select[IntegerPartitions[n], UnsameQ@@#&&combs[Length[#], Union[#]]=={}&]], {n,0,30}]

A364915 Number of integer partitions of n such that no distinct part can be written as a nonnegative linear combination of other distinct parts.

Original entry on oeis.org

1, 1, 2, 2, 3, 3, 4, 5, 6, 7, 8, 12, 10, 16, 16, 19, 21, 29, 25, 37, 35, 44, 46, 60, 55, 75, 71, 90, 90, 114, 110, 140, 138, 167, 163, 217, 201, 248, 241, 298, 303, 359, 355, 425, 422, 520, 496, 594, 603, 715, 706, 834, 826, 968, 972, 1153, 1147, 1334, 1315, 1530
Offset: 0

Views

Author

Gus Wiseman, Aug 22 2023

Keywords

Examples

			The a(1) = 1 through a(10) = 8 partitions (A=10):
  1  2   3    4     5      6       7        8         9          A
     11  111  22    32     33      43       44        54         55
              1111  11111  222     52       53        72         64
                           111111  322      332       333        73
                                   1111111  2222      522        433
                                            11111111  3222       3322
                                                      111111111  22222
                                                                 1111111111
The partition (5,4,3) has no part that can be written as a nonnegative linear combination of the others, so is counted under a(12).
The partition (6,4,3,2) has 6=4+2, or 6=3+3, or 6=2+2+2, or 4=2+2, so is not counted under a(15).
		

Crossrefs

For sums instead of combinations we have A237667, binary A236912.
For subsets instead of partitions we have A326083, complement A364914.
The strict case is A364350.
The complement is A365068, strict A364839.
The positive case is A365072, strict A365006.
A000041 counts integer partitions, strict A000009.
A007865 counts binary sum-free sets w/ re-usable parts, complement A093971.
A008284 counts partitions by length, strict A008289.
A116861 and A364916 count linear combinations of strict partitions.
A364912 counts linear combinations of partitions of k.

Programs

  • Mathematica
    combs[n_,y_]:=With[{s=Table[{k,i},{k,y}, {i,0,Floor[n/k]}]}, Select[Tuples[s], Total[Times@@@#]==n&]];
    Table[Length[Select[IntegerPartitions[n], Function[ptn,!Or@@Table[combs[ptn[[k]],Delete[ptn,k]]!={}, {k,Length[ptn]}]]@*Union]], {n,0,15}]
  • Python
    from sympy.utilities.iterables import partitions
    def A364915(n):
        if n <= 1: return 1
        alist, c = [set(tuple(sorted(set(p))) for p in partitions(i)) for i in range(n)], 1
        for p in partitions(n,k=n-1):
            s = set(p)
            if not any(set(t).issubset(s-{q}) for q in s for t in alist[q]):
                c += 1
        return c # Chai Wah Wu, Sep 23 2023

Formula

a(n) = A000041(n) - A365068(n).

Extensions

a(37)-a(59) from Chai Wah Wu, Sep 25 2023

A364755 Number of subsets of {1..n} containing n but not containing the sum of any two distinct elements.

Original entry on oeis.org

0, 1, 2, 3, 6, 9, 15, 24, 41, 60, 99, 149, 236, 355, 552, 817, 1275, 1870, 2788, 4167, 6243, 9098, 13433, 19718, 28771, 42137, 60652, 88603, 127555, 185200, 261781, 382931, 541022, 783862, 1096608, 1595829, 2217467, 3223064, 4441073, 6465800, 8893694
Offset: 0

Views

Author

Gus Wiseman, Aug 11 2023

Keywords

Examples

			The subset S = {1,3,6,8} has pair-sums {4,7,9,11,14}, which are disjoint from S, so it is counted under a(8).
The a(1) = 1 through a(6) = 15 subsets:
  {1}  {2}    {3}    {4}      {5}      {6}
       {1,2}  {1,3}  {1,4}    {1,5}    {1,6}
              {2,3}  {2,4}    {2,5}    {2,6}
                     {3,4}    {3,5}    {3,6}
                     {1,2,4}  {4,5}    {4,6}
                     {2,3,4}  {1,2,5}  {5,6}
                              {1,3,5}  {1,2,6}
                              {2,4,5}  {1,3,6}
                              {3,4,5}  {1,4,6}
                                       {2,3,6}
                                       {2,5,6}
                                       {3,4,6}
                                       {3,5,6}
                                       {4,5,6}
                                       {3,4,5,6}
		

Crossrefs

Partial sums are A085489(n) - 1, complement counted by A364534.
With re-usable parts we have A288728.
The complement with n is counted by A364756, first differences of A088809.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n]],MemberQ[#,n]&&Intersection[#,Total/@Subsets[#,{2}]]=={}&]],{n,0,10}]

Formula

First differences of A085489.

Extensions

a(21) onwards added (using A085489) by Andrew Howroyd, Jan 13 2024

A364670 Number of strict integer partitions of n with a part equal to the sum of two distinct others. A variation of sum-full strict partitions.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 3, 1, 4, 3, 7, 6, 10, 10, 14, 16, 24, 25, 34, 39, 48, 59, 71, 81, 103, 120, 136, 166, 194, 226, 260, 312, 353, 419, 473, 557, 636, 742, 824, 974, 1097, 1266, 1418, 1646, 1837, 2124, 2356, 2717, 3029, 3469, 3830, 4383, 4884, 5547
Offset: 0

Views

Author

Gus Wiseman, Aug 03 2023

Keywords

Examples

			The a(6) = 1 through a(16) = 10 strict partitions (A = 10):
  321  .  431  .  532   5321  642   5431  743   6432   853
                  541         651   6421  752   6531   862
                  4321        5421  7321  761   7431   871
                              6321        5432  7521   6532
                                          6431  9321   6541
                                          6521  54321  7432
                                          8321         7621
                                                       8431
                                                       A321
                                                       64321
		

Crossrefs

For subsets of {1..n} we have A088809, complement A085489.
The non-strict version is A237113, complement A236912.
The non-binary complement is A237667, ranks A364532.
Allowing re-used parts gives A363226, non-strict A363225.
The non-binary version is A364272, non-strict A237668.
The complement is A364533, non-binary A364349.
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by length, strict A008289.
A108917 counts knapsack partitions, strict A275972, ranks A299702.
A323092 counts double-free partitions, ranks A320340.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], UnsameQ@@#&&Intersection[#, Total/@Subsets[#,{2}]]!={}&]],{n,0,30}]

A365006 Number of strict integer partitions of n such that no part can be written as a (strictly) positive linear combination of the others.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 3, 2, 4, 4, 8, 4, 11, 9, 16, 14, 25, 20, 37, 31, 49, 47, 73, 64, 101, 96, 135, 133, 190, 181, 256, 253, 336, 342, 453, 452, 596, 609, 771, 803, 1014, 1041, 1309, 1362, 1674, 1760, 2151, 2249, 2736, 2884, 3449, 3661, 4366, 4615, 5486, 5825
Offset: 0

Views

Author

Gus Wiseman, Aug 31 2023

Keywords

Comments

We consider (for example) that 2x + y + 3z is a positive linear combination of (x,y,z), but 2x + y is not, as the coefficient of z is 0.

Examples

			The a(8) = 2 through a(13) = 11 partitions:
  (8)    (9)      (10)       (11)       (12)       (13)
  (5,3)  (5,4)    (6,4)      (6,5)      (7,5)      (7,6)
         (7,2)    (7,3)      (7,4)      (5,4,3)    (8,5)
         (4,3,2)  (4,3,2,1)  (8,3)      (5,4,2,1)  (9,4)
                             (9,2)                 (10,3)
                             (5,4,2)               (11,2)
                             (6,3,2)               (6,4,3)
                             (5,3,2,1)             (6,5,2)
                                                   (7,4,2)
                                                   (5,4,3,1)
                                                   (6,4,2,1)
		

Crossrefs

The nonnegative version for subsets appears to be A124506.
For sums instead of combinations we have A364349, binary A364533.
The nonnegative version is A364350, complement A364839.
For subsets instead of partitions we have A365044, complement A365043.
The non-strict version is A365072, nonnegative A364915.
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by length, strict A008289.
A116861 and A364916 count linear combinations of strict partitions.
A364912 counts linear combinations of partitions of k.

Programs

  • Mathematica
    combp[n_,y_]:=With[{s=Table[{k,i},{k,y},{i,1,Floor[n/k]}]},Select[Tuples[s],Total[Times@@@#]==n&]];
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&And@@Table[combp[#[[k]],Delete[#,k]]=={},{k,Length[#]}]&]],{n,0,30}]
  • Python
    from sympy.utilities.iterables import partitions
    def A365006(n):
        if n <= 1: return 1
        alist = [set(tuple(sorted(set(p))) for p in partitions(i)) for i in range(n)]
        c = 1
        for p in partitions(n,k=n-1):
            if max(p.values()) == 1:
                s = set(p)
                for q in s:
                    if tuple(sorted(s-{q})) in alist[q]:
                        break
                else:
                    c += 1
        return c # Chai Wah Wu, Sep 20 2023

Extensions

a(31)-a(56) from Chai Wah Wu, Sep 20 2023

A365070 Number of subsets of {1..n} containing n and some element equal to the sum of two other (possibly equal) elements.

Original entry on oeis.org

0, 0, 1, 1, 5, 9, 24, 46, 109, 209, 469, 922, 1932, 3858, 7952, 15831, 32214, 64351, 129813, 259566, 521681, 1042703, 2091626, 4182470, 8376007, 16752524, 33530042, 67055129, 134165194, 268328011, 536763582, 1073523097, 2147268041, 4294505929, 8589506814, 17178978145
Offset: 0

Views

Author

Gus Wiseman, Aug 24 2023

Keywords

Comments

These are binary sum-full sets where elements can be re-used. The complement is counted by A288728. The non-binary version is A365046, complement A124506. For non-re-usable parts we have A364756, complement A085489.

Examples

			The subset {1,3} has no element equal to the sum of two others, so is not counted under a(3).
The subset {3,4,5} has no element equal to the sum of two others, so is not counted under a(5).
The subset {1,3,4} has 4 = 1 + 3, so is counted under a(4).
The subset {2,4,5} has 4 = 2 + 2, so is counted under a(5).
The a(0) = 0 through a(5) = 9 subsets:
  .  .  {1,2}  {1,2,3}  {2,4}      {1,2,5}
                        {1,2,4}    {1,4,5}
                        {1,3,4}    {2,3,5}
                        {2,3,4}    {2,4,5}
                        {1,2,3,4}  {1,2,3,5}
                                   {1,2,4,5}
                                   {1,3,4,5}
                                   {2,3,4,5}
                                   {1,2,3,4,5}
		

Crossrefs

The complement w/o re-usable parts is A085489, first differences of A364755.
First differences of A093971.
The non-binary complement is A124506, first differences of A326083.
The complement is counted by A288728, first differences of A007865.
For partitions (not requiring n) we have A363225, strict A363226.
The case without re-usable parts is A364756, firsts differences of A088809.
The non-binary version is A365046, first differences of A364914.
A116861 and A364916 count linear combinations of strict partitions.
A364350 counts combination-free strict partitions, complement A364839.
A364913 counts combination-full partitions.
A365006 counts no positive combination-full strict ptns.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n]], MemberQ[#,n]&&Intersection[#,Total /@ Tuples[#,2]]!={}&]], {n,0,10}]

Formula

First differences of A093971.

Extensions

a(21) onwards added (using A093971) by Andrew Howroyd, Jan 13 2024

A365071 Number of subsets of {1..n} containing n such that no element is a sum of distinct other elements. A variation of non-binary sum-free subsets without re-usable elements.

Original entry on oeis.org

0, 1, 2, 3, 6, 9, 15, 23, 40, 55, 94, 132, 210, 298, 476, 644, 1038, 1406, 2149, 2965, 4584, 6077, 9426, 12648, 19067, 25739, 38958, 51514, 78459, 104265, 155436, 208329, 312791, 411886, 620780, 823785, 1224414, 1631815, 2437015, 3217077, 4822991
Offset: 0

Views

Author

Gus Wiseman, Aug 26 2023

Keywords

Comments

The complement is counted by A365069. The binary version is A364755, complement A364756. For re-usable parts we have A288728, complement A365070.

Examples

			The subset {1,3,4,6} has 4 = 1 + 3 so is not counted under a(6).
The subset {2,3,4,5,6} has 6 = 2 + 4 and 4 = 1 + 3 so is not counted under a(6).
The a(0) = 0 through a(6) = 15 subsets:
  .  {1}  {2}    {3}    {4}      {5}      {6}
          {1,2}  {1,3}  {1,4}    {1,5}    {1,6}
                 {2,3}  {2,4}    {2,5}    {2,6}
                        {3,4}    {3,5}    {3,6}
                        {1,2,4}  {4,5}    {4,6}
                        {2,3,4}  {1,2,5}  {5,6}
                                 {1,3,5}  {1,2,6}
                                 {2,4,5}  {1,3,6}
                                 {3,4,5}  {1,4,6}
                                          {2,3,6}
                                          {2,5,6}
                                          {3,4,6}
                                          {3,5,6}
                                          {4,5,6}
                                          {3,4,5,6}
		

Crossrefs

First differences of A151897.
The version with re-usable parts is A288728 first differences of A007865.
The binary version is A364755, first differences of A085489.
The binary complement is A364756, first differences of A088809.
The complement is counted by A365069, first differences of A364534.
The complement w/ re-usable parts is A365070, first differences of A093971.
A108917 counts knapsack partitions, strict A275972.
A124506 counts combination-free subsets, differences of A326083.
A364350 counts combination-free strict partitions, complement A364839.
A365046 counts combination-full subsets, differences of A364914.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n]], MemberQ[#,n]&&Intersection[#, Total/@Subsets[#,{2,Length[#]}]]=={}&]], {n,0,10}]

Formula

a(n) + A365069(n) = 2^(n-1).
First differences of A151897.

Extensions

a(14) onwards added (using A151897) by Andrew Howroyd, Jan 13 2024
Previous Showing 11-17 of 17 results.