cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A366622 Sum of the divisors of 6^n-1.

Original entry on oeis.org

6, 48, 264, 1824, 9672, 67584, 335928, 2367552, 13031040, 94708224, 454285152, 3523559424, 15677418768, 113738502240, 599516366592, 4210539708672, 20465720064000, 154928015278080, 735060126170880, 5906693566844928, 26937015875831424, 188358079273592832
Offset: 1

Views

Author

Sean A. Irvine, Oct 14 2023

Keywords

Examples

			a(4)=1824 because 6^4-1 has divisors {1, 5, 7, 35, 37, 185, 259, 1295}.
		

Crossrefs

Programs

  • Maple
    a:=n->numtheory[sigma](6^n-1):
    seq(a(n), n=1..100);
  • Mathematica
    DivisorSigma[1, 6^Range[30]-1]

Formula

a(n) = sigma(6^n-1) = A000203(A024062(n)).

A366620 Number of distinct prime divisors of 6^n - 1.

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 4, 4, 5, 3, 7, 3, 5, 5, 6, 5, 7, 3, 8, 4, 5, 5, 9, 4, 7, 6, 8, 2, 10, 3, 9, 6, 8, 6, 13, 6, 6, 6, 11, 3, 9, 5, 9, 10, 8, 4, 13, 5, 8, 9, 11, 4, 11, 6, 13, 7, 6, 4, 19, 4, 5, 10, 12, 8, 12, 3, 11, 8, 16, 2, 18, 5, 10, 10, 9, 6, 15, 4, 16, 8
Offset: 1

Views

Author

Sean A. Irvine, Oct 14 2023

Keywords

Crossrefs

Programs

  • PARI
    for(n = 1, 100, print1(omega(6^n - 1), ", "))

Formula

a(n) = omega(6^n-1) = A001221(A024062(n)).

A366630 a(n) = phi(6^n+1), where phi is Euler's totient function (A000010).

Original entry on oeis.org

1, 6, 36, 180, 1296, 6000, 41472, 230496, 1580800, 8359200, 58579200, 310968900, 2175102720, 10971642240, 76065091200, 351048600000, 2811459796992, 14508487949472, 88870766837760, 522016066337712, 3564233663616000, 17479898551382400, 128060205344805888
Offset: 0

Views

Author

Sean A. Irvine, Oct 14 2023

Keywords

Crossrefs

Programs

  • Mathematica
    EulerPhi[6^Range[0, 22] + 1] (* Paul F. Marrero Romero, Oct 17 2023 *)
  • PARI
    {a(n) = eulerphi(6^n+1)}

Formula

a(n) = A000010(A062394(n)). - Paul F. Marrero Romero, Oct 17 2023

A274907 Largest prime factor of 6^n - 1.

Original entry on oeis.org

5, 7, 43, 37, 311, 43, 55987, 1297, 2467, 311, 3154757, 97, 760891, 55987, 1201, 98801, 30839, 46441, 638073026189, 6781, 1822428931, 51828151, 7505944891, 1678321, 40185601, 760891, 623067280651, 5030761, 7369130657357778596659, 1950271, 49744740983476472807
Offset: 1

Views

Author

Vincenzo Librandi, Jul 11 2016

Keywords

Examples

			6^5 - 1 = 7775 = 5*5*311, so a(5) = 311.
		

Crossrefs

Cf. similar sequences listed in A274906.

Programs

  • Magma
    [Maximum(PrimeDivisors(6^n-1)): n in [1..40]];
    
  • Mathematica
    Table[FactorInteger[6^n - 1][[-1, 1]], {n, 40}]
  • PARI
    a(n) = vecmax(factor(6^n-1)[,1]); \\ Michel Marcus, Jul 13 2016

Formula

a(n) = A006530(A024062(n)). - Michel Marcus, Jul 11 2016
Previous Showing 11-14 of 14 results.