cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A057955 Number of prime factors of 6^n - 1 (counted with multiplicity).

Original entry on oeis.org

1, 2, 2, 3, 3, 4, 2, 4, 4, 6, 3, 7, 3, 6, 6, 6, 5, 7, 3, 9, 4, 5, 5, 9, 6, 7, 6, 9, 2, 11, 3, 9, 6, 8, 7, 13, 6, 6, 6, 12, 3, 10, 5, 9, 11, 8, 4, 13, 5, 10, 9, 11, 4, 11, 7, 14, 7, 6, 4, 20, 4, 5, 10, 12, 9, 12, 3, 11, 8, 18, 2, 18, 5, 10, 12, 9, 6, 15, 4, 17, 8, 7, 8, 17, 10, 7, 7, 12, 4, 18, 6
Offset: 1

Views

Author

Patrick De Geest, Nov 15 2000

Keywords

Examples

			6^10 - 1 = 60466175 = 5^2 * 7 * 11 * 101 * 311 and a(10) = bigomega(60466175) = 2+1+1+1+1 = 6. - _Bernard Schott_, Feb 02 2020
		

Crossrefs

bigomega(b^n-1): A057951 (b=10), A057952 (b=9), A057953 (b=8), A057954 (b=7), this sequence (b=6), A057956 (b=5), A057957 (b=4), A057958 (b=3), A046051 (b=2).

Programs

Formula

Möbius transform of A085031. - T. D. Noe, Jun 19 2003
a(n) = A001222(A024062(n)). - Amiram Eldar, Feb 02 2020

A059888 a(n) = |{m : multiplicative order of 6 mod m=n}|.

Original entry on oeis.org

2, 2, 2, 4, 4, 10, 2, 8, 12, 40, 6, 108, 6, 42, 40, 48, 30, 100, 6, 332, 10, 22, 30, 376, 26, 118, 48, 332, 2, 1436, 6, 448, 54, 222, 88, 7952, 62, 54, 54, 2680, 6, 698, 30, 476, 1476, 222, 14, 7632, 28, 438, 478, 1916, 14, 1872, 84, 11896, 118, 58, 14, 784452
Offset: 1

Views

Author

Vladeta Jovovic, Feb 06 2001

Keywords

Comments

The multiplicative order of a mod m, GCD(a,m)=1, is the smallest natural number d for which a^d = 1 (mod m).
Also, number of primitive factors of 6^n - 1. - Max Alekseyev, May 03 2022

Crossrefs

Number of primitive factors of b^n - 1: A059499 (b=2), A059885(b=3), A059886 (b=4), A059887 (b=5), this sequence (b=6), A059889 (b=7), A059890 (b=8), A059891 (b=9), A059892 (b=10).
Column k=6 of A212957.

Programs

  • Maple
    with(numtheory):
    a:= n-> add(mobius(n/d)*tau(6^d-1), d=divisors(n)):
    seq(a(n), n=1..50);  # Alois P. Heinz, Oct 12 2012
  • Mathematica
    a[n_] := DivisorSum[n, MoebiusMu[n/#] * DivisorSigma[0, 6^#-1] &]; Array[a, 60] (* Amiram Eldar, Jan 25 2025 *)
  • PARI
    a(n) = sumdiv(n, d, moebius(n/d) * numdiv(6^d-1)); \\ Amiram Eldar, Jan 25 2025

Formula

a(n) = Sum_{ d divides n } mu(n/d)*tau(6^d-1), (mu(n) = Moebius function A008683, tau(n) = number of divisors of n A000005).

A274906 Largest prime factor of 4^n - 1.

Original entry on oeis.org

3, 5, 7, 17, 31, 13, 127, 257, 73, 41, 683, 241, 8191, 127, 331, 65537, 131071, 109, 524287, 61681, 5419, 2113, 2796203, 673, 4051, 8191, 262657, 15790321, 3033169, 1321, 2147483647, 6700417, 599479, 131071, 122921, 38737, 616318177, 525313, 22366891
Offset: 1

Views

Author

Vincenzo Librandi, Jul 11 2016

Keywords

Examples

			4^7 - 1 = 16383 = 3*43*127, so a(7) = 127
		

Crossrefs

Second bisection of A005420. - Michel Marcus, Jul 13 2016
Cf. largest prime factor of k^n-1: A005420 (k=2), A074477 (k=3), this sequence (k=4), A074479 (k=5), A274907 (k=6), A074249 (k=7), A274908 (k=8), A274909 (k=9), A005422 (k=10), A274910 (k=11).

Programs

  • Magma
    [Maximum(PrimeDivisors(4^n-1)): n in [1..40]];
  • Mathematica
    Table[FactorInteger[4^n - 1][[-1, 1]], {n, 40}]

Formula

a(n) = A006530(A024036(n)). - Michel Marcus, Jul 11 2016
a(n) = max(A002587(n),A005420(n)). - Max Alekseyev, Apr 25 2022

Extensions

Terms to a(100) in b-file from Vincenzo Librandi, Jul 13 2016
a(101)-a(603) in b-file from Amiram Eldar, Feb 08 2020
a(604)-a(1128) in b-file from Max Alekseyev, Jul 25 2023, Mar 15 2025

A366621 Number of divisors of 6^n-1.

Original entry on oeis.org

2, 4, 4, 8, 6, 16, 4, 16, 16, 48, 8, 128, 8, 48, 48, 64, 32, 128, 8, 384, 16, 32, 32, 512, 32, 128, 64, 384, 4, 1536, 8, 512, 64, 256, 96, 8192, 64, 64, 64, 3072, 8, 768, 32, 512, 1536, 256, 16, 8192, 32, 512, 512, 2048, 16, 2048, 96, 12288, 128, 64, 16
Offset: 1

Views

Author

Sean A. Irvine, Oct 14 2023

Keywords

Examples

			a(4)=8 because 6^4-1 has divisors {1, 5, 7, 35, 37, 185, 259, 1295}.
		

Crossrefs

Programs

  • Maple
    a:=n->numtheory[tau](6^n-1):
    seq(a(n), n=1..100);
  • Mathematica
    DivisorSigma[0, 6^Range[100]-1]
  • PARI
    a(n) = numdiv(6^n-1);

Formula

a(n) = sigma0(6^n-1) = A000005(A024062(n)).

A366622 Sum of the divisors of 6^n-1.

Original entry on oeis.org

6, 48, 264, 1824, 9672, 67584, 335928, 2367552, 13031040, 94708224, 454285152, 3523559424, 15677418768, 113738502240, 599516366592, 4210539708672, 20465720064000, 154928015278080, 735060126170880, 5906693566844928, 26937015875831424, 188358079273592832
Offset: 1

Views

Author

Sean A. Irvine, Oct 14 2023

Keywords

Examples

			a(4)=1824 because 6^4-1 has divisors {1, 5, 7, 35, 37, 185, 259, 1295}.
		

Crossrefs

Programs

  • Maple
    a:=n->numtheory[sigma](6^n-1):
    seq(a(n), n=1..100);
  • Mathematica
    DivisorSigma[1, 6^Range[30]-1]

Formula

a(n) = sigma(6^n-1) = A000203(A024062(n)).

A085031 Number of prime factors of cyclotomic(n,6), which is A019324(n), the value of the n-th cyclotomic polynomial evaluated at x=6.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 2, 2, 2, 3, 2, 2, 4, 1, 2, 2, 1, 1, 4, 1, 3, 3, 2, 2, 1, 1, 2, 3, 2, 2, 3, 3, 5, 2, 2, 2, 2, 1, 4, 3, 3, 2, 3, 2, 3, 1, 3, 3, 3, 2, 2, 4, 3, 3, 3, 4, 3, 1, 4, 3, 4, 3, 2, 2, 2, 5, 1, 3, 4, 3, 3, 2, 2, 4, 3, 3, 2, 3, 7, 2, 3, 1, 4, 2, 3, 1, 2
Offset: 1

Views

Author

T. D. Noe, Jun 19 2003

Keywords

Comments

The Mobius transform of this sequence yields A057955, number of prime factors of 6^n-1.

References

Crossrefs

omega(Phi(n,x)): A085021 (x=2), A085028 (x=3), A085029 (x=4), A085030 (x=5), this sequence (x=6), A085032 (x=7), A085033 (x=8), A085034 (x=9), A085035 (x=10).

Programs

  • Mathematica
    Table[Plus@@Transpose[FactorInteger[Cyclotomic[n, 6]]][[2]], {n, 1, 100}]

A366620 Number of distinct prime divisors of 6^n - 1.

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 4, 4, 5, 3, 7, 3, 5, 5, 6, 5, 7, 3, 8, 4, 5, 5, 9, 4, 7, 6, 8, 2, 10, 3, 9, 6, 8, 6, 13, 6, 6, 6, 11, 3, 9, 5, 9, 10, 8, 4, 13, 5, 8, 9, 11, 4, 11, 6, 13, 7, 6, 4, 19, 4, 5, 10, 12, 8, 12, 3, 11, 8, 16, 2, 18, 5, 10, 10, 9, 6, 15, 4, 16, 8
Offset: 1

Views

Author

Sean A. Irvine, Oct 14 2023

Keywords

Crossrefs

Programs

  • PARI
    for(n = 1, 100, print1(omega(6^n - 1), ", "))

Formula

a(n) = omega(6^n-1) = A001221(A024062(n)).

A379639 Smallest primitive prime factor of 6^n-1.

Original entry on oeis.org

5, 7, 43, 37, 311, 31, 55987, 1297, 19, 11, 23, 13, 3433, 29, 1171, 17, 239, 46441, 191, 241, 1822428931, 51828151, 47, 1678321, 18198701, 53, 163, 421, 7369130657357778596659, 1950271, 5333, 353, 67, 190537, 71, 73, 149, 1787, 3143401, 41, 8648131, 2527867231
Offset: 1

Views

Author

Sean A. Irvine, Dec 28 2024

Keywords

Comments

Also, smallest prime p such that 1/p has senary period n.

Crossrefs

Cf. A112927 (base 2), A143663 (base 3), A112092 (base 4), A143665 (base 5), A379639 (base 6), A379640 (base 7), A379641 (base 8), A379642 (base 9), A007138 (base 10), A379644 (base 11), A252170 (base 12).
Cf. A274907.

Programs

  • PARI
    listap(nn) = {prf = []; for (n=1, nn, vp = (factor(6^n-1)[, 1])~; f = setminus(Set(vp), Set(prf)); prf = concat(prf, f); print1(vecmin(Vec(f)), ", "); ); }

A366718 Largest prime factor of 12^n - 1.

Original entry on oeis.org

11, 13, 157, 29, 22621, 157, 4943, 233, 80749, 22621, 266981089, 20593, 20369233, 13063, 22621, 260753, 74876782031, 80749, 29043636306420266077, 85403261, 8177824843189, 57154490053, 321218438243, 2227777, 12629757106815551, 20369233, 86769286104133
Offset: 1

Views

Author

Sean A. Irvine, Oct 17 2023

Keywords

Crossrefs

Programs

  • Magma
    [Maximum(PrimeDivisors(12^n-1)): n in [1..40]];
  • Mathematica
    Table[FactorInteger[12^n - 1][[-1, 1]], {n, 40}]

Formula

a(n) = A006530(A024140(n)).
Showing 1-9 of 9 results.