cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A005420 Largest prime factor of 2^n - 1.

Original entry on oeis.org

3, 7, 5, 31, 7, 127, 17, 73, 31, 89, 13, 8191, 127, 151, 257, 131071, 73, 524287, 41, 337, 683, 178481, 241, 1801, 8191, 262657, 127, 2089, 331, 2147483647, 65537, 599479, 131071, 122921, 109, 616318177, 524287, 121369, 61681, 164511353, 5419
Offset: 2

Views

Author

Keywords

Examples

			2^6 - 1 = 63 = 3*21 = 9*7, so a(6) = 7.
		

References

  • J. Brillhart et al., Factorizations of b^n +- 1. Contemporary Mathematics, Vol. 22, Amer. Math. Soc., Providence, RI, 2nd edition, 1985; and later supplements.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. similar sequences listed in A274906.
Cf. A337431 (a(n)=a(2n)), A359063 (a(n)=a(2n)=a(4n)), A359088.

Programs

  • Magma
    [Maximum(PrimeDivisors(2^n-1)): n in [2..45]]; // Vincenzo Librandi, Jul 13 2016
  • Mathematica
    a[n_] := a[n] = FactorInteger[2^n-1] // Last // First; Table[Print[{n, a[n]}, If[2^n-1 == a[n], " Mersenne prime", " "]]; a[n], {n, 2, 127}] (* Jean-François Alcover, Dec 11 2012 *)
    Table[FactorInteger[2^n - 1][[-1, 1]], {n, 2, 40}] (* Vincenzo Librandi, Jul 13 2016 *)
  • PARI
    for(n=2,44, v=factor(2^n-1)[,1]; print1(v[#v]", "));
    
  • PARI
    a(n) = vecmax(factor(2^n-1)[,1]); \\ Michel Marcus, Dec 15 2022
    

Formula

a(n) = a(2n) iff a(n) > A002587(n). See A337431. - Thomas Ordowski, Jan 07 2014
a(n) = A006530(A000225(n)). - Vincenzo Librandi, Jul 13 2016
a(n) = 2^n-1 = A000225(n) iff n is a Mersenne exponent (A000043). - Bernard Schott, Dec 11 2022

Extensions

Description corrected by Michael Somos, Feb 24 2002
More terms from Rick L. Shepherd, Aug 22 2002
Incorrect comments removed by Michel Marcus, Dec 15 2022

A046798 Number of divisors of 2^n + 1.

Original entry on oeis.org

2, 2, 2, 3, 2, 4, 4, 4, 2, 8, 6, 4, 4, 4, 8, 12, 2, 4, 16, 4, 4, 12, 8, 4, 8, 16, 16, 20, 4, 8, 48, 4, 4, 24, 16, 32, 16, 8, 16, 12, 4, 8, 64, 4, 8, 64, 32, 8, 8, 8, 64, 48, 8, 8, 64, 48, 8, 24, 8, 16, 16, 4, 32, 64, 4, 64, 64, 8, 12, 24, 96, 8, 32, 8, 32, 96, 16, 64, 768, 4, 8, 192, 32, 64
Offset: 0

Views

Author

Keywords

Comments

a(n) is odd iff n = 3, as a consequence of the Catalan-Mihăilescu theorem. - Bernard Schott, Oct 05 2021

Examples

			a(7)=4, because 2^7 + 1 = 129 has 4 divisors.
		

Crossrefs

Programs

Formula

a(n) = A000005(A000051(n)). - Michel Marcus, Mar 18 2017

A057957 Number of prime factors of 4^n - 1 (counted with multiplicity).

Original entry on oeis.org

1, 2, 3, 3, 3, 5, 3, 4, 6, 6, 4, 7, 3, 6, 7, 5, 3, 10, 3, 8, 8, 7, 4, 10, 7, 7, 9, 8, 6, 13, 3, 7, 9, 7, 9, 14, 5, 7, 8, 10, 5, 14, 5, 10, 13, 9, 6, 13, 5, 14, 11, 10, 6, 15, 12, 11, 9, 9, 6, 17, 3, 8, 14, 9, 9, 15, 5, 11, 9, 16, 6, 19, 6, 10, 14, 11, 10, 18, 5, 13, 16, 10, 8, 19, 7, 10, 11
Offset: 1

Views

Author

Patrick De Geest, Nov 15 2000

Keywords

Crossrefs

bigomega(b^n-1): A057951 (b=10), A057952 (b=9), A057953 (b=8), A057954 (b=7), A057955 (b=6), A057956 (b=5), this sequence (b=4), A057958 (b=3), A046051 (b=2).

Programs

  • Mathematica
    PrimeOmega/@(4^Range[90]-1) (* Harvey P. Dale, Dec 31 2018 *)

Formula

Mobius transform of A085029. - T. D. Noe, Jun 19 2003
a(n) = A001222(A024036(n)) = A046051(2*n). - Amiram Eldar, Feb 01 2020

A059886 a(n) = |{m : multiplicative order of 4 mod m=n}|.

Original entry on oeis.org

2, 2, 4, 4, 6, 16, 6, 8, 26, 38, 14, 68, 6, 54, 84, 16, 6, 462, 6, 140, 132, 110, 14, 664, 120, 118, 128, 188, 62, 4456, 6, 96, 364, 118, 498, 7608, 30, 118, 180, 568, 30, 9000, 30, 892, 3974, 494, 62, 5360, 24, 8024, 1524, 892, 62, 9600, 3050, 1784, 372, 446
Offset: 1

Views

Author

Vladeta Jovovic, Feb 06 2001

Keywords

Comments

The multiplicative order of a mod m, GCD(a,m)=1, is the smallest natural number d for which a^d = 1 (mod m).
a(n) is the number of orders of degree-n monic irreducible polynomials over GF(4).
Also, number of primitive factors of 4^n - 1. - Max Alekseyev, May 03 2022

Examples

			a(1) = |{1,3}| = 2, a(2) = |{5,15}| =2, a(3) = |{7,9,21,63}| =4, a(4) = |{17,51,85,255}| = 4.
		

Crossrefs

Number of primitive factors of b^n - 1: A059499 (b=2), A059885(b=3), this sequence (b=4), A059887 (b=5), A059888 (b=6), A059889 (b=7), A059890 (b=8), A059891 (b=9), A059892 (b=10).
Column k=4 of A212957.

Programs

  • Maple
    with(numtheory):
    a:= n-> add(mobius(n/d)*tau(4^d-1), d=divisors(n)):
    seq(a(n), n=1..60);  # Alois P. Heinz, Oct 12 2012
  • Mathematica
    a[n_] := DivisorSum[n, MoebiusMu[n/#]*DivisorSigma[0, 4^# - 1]&]; Array[a, 100] (* Jean-François Alcover, Nov 11 2015 *)
  • PARI
    a(n) = sumdiv(n, d, moebius(n/d) * numdiv(4^d-1)); \\ Amiram Eldar, Jan 25 2025

Formula

a(n) = Sum_{ d divides n } mu(n/d)*tau(4^d-1), (mu(n) = Moebius function A008683, tau(n) = number of divisors of n A000005).

A005422 Largest prime factor of 10^n - 1.

Original entry on oeis.org

3, 11, 37, 101, 271, 37, 4649, 137, 333667, 9091, 513239, 9901, 265371653, 909091, 2906161, 5882353, 5363222357, 333667, 1111111111111111111, 27961, 10838689, 513239, 11111111111111111111111, 99990001, 182521213001, 1058313049
Offset: 1

Views

Author

Keywords

References

  • J. Brillhart et al., Factorizations of b^n +- 1. Contemporary Mathematics, Vol. 22, Amer. Math. Soc., Providence, RI, 2nd edition, 1985; and later supplements.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Same as A003020 except for the additional a(1) = 3.
Cf. similar sequences listed in A274906.

Programs

Formula

For n > 1, a(n) = A003020(n). For 1 < n < 10, a(n) = A075024(n). - M. F. Hasler, Jul 30 2015
a(n) = A006530(A002283(n)). - Vincenzo Librandi, Jul 13 2016
a(A004023(n)) = A002275(A004023(n)). - Bernard Schott, May 24 2022

Extensions

Terms to a(100) in b-file from Yousuke Koide added by T. D. Noe, Dec 06 2006
Edited by M. F. Hasler, Jul 30 2015
a(101)-a(322) in b-file from Ray Chandler, Apr 22 2017
a(323)-a(352) in b-file from Max Alekseyev, Apr 26 2022

A069061 Sum of divisors of 2^n+1.

Original entry on oeis.org

4, 6, 13, 18, 48, 84, 176, 258, 800, 1302, 2736, 4356, 10928, 20520, 51792, 65538, 174768, 351120, 699056, 1110276, 3100240, 5048232, 11184816, 17041416, 49012992, 82623888, 211053040, 284225796, 727960800, 1494039792, 2863311536, 4301668356, 12611914848, 20788904016
Offset: 1

Views

Author

Benoit Cloitre, Apr 04 2002

Keywords

Crossrefs

Programs

  • Mathematica
    DivisorSigma[1, 2^Range[50] + 1] (* Paolo Xausa, Jul 05 2024 *)
  • PARI
    a(n) = sigma(2^n+1); \\ Michel Marcus, Nov 24 2013

Formula

a(n) = sigma(2^n+1).
a(n) = A000203(A000051(n)). - Michel Marcus, Nov 24 2013

Extensions

More terms from Amiram Eldar, Oct 04 2019

A274909 Largest prime factor of 9^n - 1.

Original entry on oeis.org

2, 5, 13, 41, 61, 73, 1093, 193, 757, 1181, 3851, 6481, 797161, 16493, 4561, 21523361, 34511, 530713, 363889, 42521761, 368089, 570461, 23535794707, 6481, 22996651, 4795973261, 19927, 647753, 20381027, 47763361, 22434744889, 926510094425921, 2413941289
Offset: 1

Views

Author

Vincenzo Librandi, Jul 11 2016

Keywords

Examples

			9^4 - 1 = 6560 = 2^5*5*41, so a(4) = 41.
		

Crossrefs

Cf. similar sequences listed in A274906.

Programs

  • Magma
    [Maximum(PrimeDivisors(9^n-1)): n in [1..40]];
  • Mathematica
    Table[FactorInteger[9^n-1][[-1,1]],{n,40}]

Formula

a(n) = A006530(A024101(n)).
a(n) = A074477(2*n). - Amiram Eldar, Feb 02 2020
a(n) = max(A074476(n),A074477(n)). - Max Alekseyev, Apr 25 2022

Extensions

Terms to a(100) in b-file from Vincenzo Librandi, Jul 13 2016
a(101)-a(330) in b-file from Amiram Eldar, Feb 02 2020
a(331)-a(691) in b-file from Max Alekseyev, May 22 2022, Jul 25 2023

A074479 Largest prime factor of 5^n - 1.

Original entry on oeis.org

2, 3, 31, 13, 71, 31, 19531, 313, 829, 521, 12207031, 601, 305175781, 19531, 1741, 11489, 466344409, 5167, 3981071, 9161, 519499, 12207031, 332207361361, 390001, 9384251, 305175781, 31051, 234750601, 22125996444329, 7621
Offset: 1

Views

Author

Rick L. Shepherd, Aug 23 2002

Keywords

Examples

			5^9 - 1 = 1953124 = (2^2)*19*31*829, so a(9) = 829.
		

Crossrefs

Cf. A074478 (largest prime factor of 5^n + 1), A074477 (largest prime factor of 3^n - 1), A074249 (largest prime factor of 7^n - 1).
Cf. similar sequences listed in A274906.

Programs

  • Magma
    [Maximum(PrimeDivisors(5^n-1)): n in [1..45]]; // Vincenzo Librandi, Jul 13 2016
  • Mathematica
    Table[FactorInteger[5^n - 1] [[-1, 1]], {n, 30}] (* Vincenzo Librandi, Aug 23 2013 *)
  • PARI
    for(n=1,32, v=factor(5^n-1); print1(v[matsize(v)[1],1],","))
    

Formula

a(n) = A006530(A024049(n)). - Vincenzo Librandi, Jul 13 2016

Extensions

Terms to a(100) in b-file from Vincenzo Librandi, Aug 23 2013
a(101)-a(448) in b-file from Amiram Eldar, Feb 01 2020
a(449)-a(502) in b-file from Max Alekseyev, Apr 25 2022

A274907 Largest prime factor of 6^n - 1.

Original entry on oeis.org

5, 7, 43, 37, 311, 43, 55987, 1297, 2467, 311, 3154757, 97, 760891, 55987, 1201, 98801, 30839, 46441, 638073026189, 6781, 1822428931, 51828151, 7505944891, 1678321, 40185601, 760891, 623067280651, 5030761, 7369130657357778596659, 1950271, 49744740983476472807
Offset: 1

Views

Author

Vincenzo Librandi, Jul 11 2016

Keywords

Examples

			6^5 - 1 = 7775 = 5*5*311, so a(5) = 311.
		

Crossrefs

Cf. similar sequences listed in A274906.

Programs

  • Magma
    [Maximum(PrimeDivisors(6^n-1)): n in [1..40]];
    
  • Mathematica
    Table[FactorInteger[6^n - 1][[-1, 1]], {n, 40}]
  • PARI
    a(n) = vecmax(factor(6^n-1)[,1]); \\ Michel Marcus, Jul 13 2016

Formula

a(n) = A006530(A024062(n)). - Michel Marcus, Jul 11 2016

A274908 Largest prime factor of 8^n - 1.

Original entry on oeis.org

7, 7, 73, 13, 151, 73, 337, 241, 262657, 331, 599479, 109, 121369, 5419, 23311, 673, 131071, 262657, 1212847, 1321, 649657, 599479, 10052678938039, 38737, 10567201, 22366891, 97685839, 14449, 9857737155463, 18837001, 658812288653553079, 22253377
Offset: 1

Views

Author

Vincenzo Librandi, Jul 11 2016

Keywords

Examples

			8^5 -1 = 32767 = 7*31*151, so a(5) = 151.
		

Crossrefs

Cf. similar sequences listed in A274906.

Programs

  • Magma
    [Maximum(PrimeDivisors(8^n-1)): n in [1..40]];
  • Maple
    f:= n -> max(map(t -> max(numtheory:-factorset(subs(x=2,t[1]))), factors(x^(3*n)-1)[2])):
    map(f, [$1..120]); # Robert Israel, Jul 12 2016
  • Mathematica
    Table[FactorInteger[8^n - 1][[-1, 1]], {n, 40}]

Formula

a(n) = A006530(A024088(n)). - Michel Marcus, Jul 11 2016
a(n) = A005420(3*n). - Robert Israel, Jul 12 2016

Extensions

Terms to a(100) in b-file from Vincenzo Librandi, Jul 13 2016
a(101)-a(402) in b-file from Amiram Eldar, Feb 02 2020
a(403)-a(500) in b-file from Max Alekseyev, Apr 25 2022, Sep 11 2022, Dec 05 2022, Feb 25 2023
Showing 1-10 of 14 results. Next