cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 20 results. Next

A062319 Number of divisors of n^n, or of A000312(n).

Original entry on oeis.org

1, 1, 3, 4, 9, 6, 49, 8, 25, 19, 121, 12, 325, 14, 225, 256, 65, 18, 703, 20, 861, 484, 529, 24, 1825, 51, 729, 82, 1653, 30, 29791, 32, 161, 1156, 1225, 1296, 5329, 38, 1521, 1600, 4961, 42, 79507, 44, 4005, 4186, 2209, 48, 9457, 99, 5151, 2704, 5565, 54
Offset: 0

Views

Author

Jason Earls, Jul 05 2001

Keywords

Comments

From Gus Wiseman, May 02 2021: (Start)
Conjecture: The number of divisors of n^n equals the number of pairwise coprime ordered n-tuples of divisors of n. Confirmed up to n = 30. For example, the a(1) = 1 through a(5) = 6 tuples are:
(1) (1,1) (1,1,1) (1,1,1,1) (1,1,1,1,1)
(1,2) (1,1,3) (1,1,1,2) (1,1,1,1,5)
(2,1) (1,3,1) (1,1,1,4) (1,1,1,5,1)
(3,1,1) (1,1,2,1) (1,1,5,1,1)
(1,1,4,1) (1,5,1,1,1)
(1,2,1,1) (5,1,1,1,1)
(1,4,1,1)
(2,1,1,1)
(4,1,1,1)
The unordered case (pairwise coprime n-multisets of divisors of n) is counted by A343654.
(End)

Examples

			From _Gus Wiseman_, May 02 2021: (Start)
The a(1) = 1 through a(5) = 6 divisors:
  1  1  1   1    1
     2  3   2    5
     4  9   4    25
        27  8    125
            16   625
            32   3125
            64
            128
            256
(End)
		

Crossrefs

Number of divisors of A000312(n).
Taking Omega instead of sigma gives A066959.
Positions of squares are A173339.
Diagonal n = k of the array A343656.
A000005 counts divisors.
A059481 counts k-multisets of elements of {1..n}.
A334997 counts length-k strict chains of divisors of n.
A343658 counts k-multisets of divisors.
Pairwise coprimality:
- A018892 counts coprime pairs of divisors.
- A084422 counts pairwise coprime subsets of {1..n}.
- A100565 counts pairwise coprime triples of divisors.
- A225520 counts pairwise coprime sets of divisors.
- A343652 counts maximal pairwise coprime sets of divisors.
- A343653 counts pairwise coprime non-singleton sets of divisors > 1.
- A343654 counts pairwise coprime sets of divisors > 1.

Programs

  • Magma
    [NumberOfDivisors(n^n): n in  [0..60]]; // Vincenzo Librandi, Nov 09 2014
    
  • Mathematica
    A062319[n_IntegerQ]:=DivisorSigma[0,n^n]; (* Enrique Pérez Herrero, Nov 09 2010 *)
    Join[{1},DivisorSigma[0,#^#]&/@Range[60]] (* Harvey P. Dale, Jun 06 2024 *)
  • PARI
    je=[]; for(n=0,200,je=concat(je,numdiv(n^n))); je
    
  • PARI
    { for (n=0, 1000, write("b062319.txt", n, " ", numdiv(n^n)); ) } \\ Harry J. Smith, Aug 04 2009
    
  • PARI
    a(n)=local(fm);fm=factor(n);prod(k=1,matsize(fm)[1],fm[k,2]*n+1) \\ Franklin T. Adams-Watters, May 03 2011
    
  • PARI
    a(n) = if(n==0, 1, sumdiv(n, d, n^omega(d))); \\ Seiichi Manyama, May 12 2021
    
  • Python
    from math import prod
    from sympy import factorint
    def A062319(n): return prod(n*d+1 for d in factorint(n).values()) # Chai Wah Wu, Jun 03 2021

Formula

a(n) = A000005(A000312(n)). - Enrique Pérez Herrero, Nov 09 2010
a(2^n) = A002064(n). - Gus Wiseman, May 02 2021
a(prime(n)) = prime(n) + 1. - Gus Wiseman, May 02 2021
a(n) = Product_{i=1..s} (1 + n * m_i) where (m_1,...,m_s) is the sequence of prime multiplicities (prime signature) of n. - Gus Wiseman, May 02 2021
a(n) = Sum_{d|n} n^omega(d) for n > 0. - Seiichi Manyama May 12 2021

A069061 Sum of divisors of 2^n+1.

Original entry on oeis.org

4, 6, 13, 18, 48, 84, 176, 258, 800, 1302, 2736, 4356, 10928, 20520, 51792, 65538, 174768, 351120, 699056, 1110276, 3100240, 5048232, 11184816, 17041416, 49012992, 82623888, 211053040, 284225796, 727960800, 1494039792, 2863311536, 4301668356, 12611914848, 20788904016
Offset: 1

Views

Author

Benoit Cloitre, Apr 04 2002

Keywords

Crossrefs

Programs

  • Mathematica
    DivisorSigma[1, 2^Range[50] + 1] (* Paolo Xausa, Jul 05 2024 *)
  • PARI
    a(n) = sigma(2^n+1); \\ Michel Marcus, Nov 24 2013

Formula

a(n) = sigma(2^n+1).
a(n) = A000203(A000051(n)). - Michel Marcus, Nov 24 2013

Extensions

More terms from Amiram Eldar, Oct 04 2019

A366714 Number of divisors of 12^n+1.

Original entry on oeis.org

2, 2, 4, 8, 4, 4, 8, 8, 8, 32, 12, 4, 16, 24, 16, 128, 4, 8, 32, 16, 64, 384, 64, 16, 64, 64, 32, 1024, 8, 8, 48, 8, 4, 512, 16, 32, 128, 16, 32, 1536, 16, 32, 64, 32, 16, 4096, 8, 32, 32, 32, 512, 512, 32, 32, 1024, 128, 512, 1536, 192, 64, 1024, 32, 64
Offset: 0

Views

Author

Sean A. Irvine, Oct 17 2023

Keywords

Examples

			a(4)=4 because 12^4+1 has divisors {1, 89, 233, 20737}.
		

Crossrefs

Programs

  • Maple
    a:=n->numtheory[tau](12^n+1):
    seq(a(n), n=0..100);
  • Mathematica
    DivisorSigma[0, 12^Range[0, 70] + 1] (* Paolo Xausa, Apr 20 2025 *)
  • PARI
    a(n) = numdiv(12^n+1);

Formula

a(n) = sigma0(12^n+1) = A000005(A178248(n)).

A053285 Totient of 2^n+1.

Original entry on oeis.org

1, 2, 4, 6, 16, 20, 48, 84, 256, 324, 800, 1364, 3840, 5460, 12544, 19800, 65536, 87380, 186624, 349524, 986880, 1365336, 3345408, 5592404, 16515072, 20250000, 52306176, 84768120, 252645120, 351847488, 760320000, 1431655764, 4288266240, 5632621632, 13628740608
Offset: 0

Views

Author

Labos Elemer, Mar 03 2000

Keywords

Examples

			It is a power of 2 iff n is a Fermat prime.
		

Crossrefs

Programs

Formula

a(n) = A000010(A000051(n)).

Extensions

a(0)=1 prepended by Alois P. Heinz, Aug 12 2015

A344897 a(n) is the number of divisors of 10^n + 1.

Original entry on oeis.org

2, 2, 2, 8, 4, 4, 4, 4, 4, 32, 8, 24, 8, 8, 16, 128, 32, 16, 8, 4, 16, 192, 16, 32, 8, 32, 8, 128, 16, 8, 128, 4, 16, 384, 16, 32, 64, 16, 8, 768, 16, 8, 128, 16, 16, 4096, 16, 16, 512, 16, 128, 256, 16, 4, 64, 768, 32, 64, 32, 16, 64, 8, 8, 3072, 8, 64, 256, 4, 16, 1024, 2048, 8, 32, 16, 128, 2048, 64, 3072, 128, 16
Offset: 0

Views

Author

Seiichi Manyama, Jun 01 2021

Keywords

Comments

a(n) is even because 10^n + 1 is not a square number.

Crossrefs

Programs

  • Mathematica
    a[0] = 2; a[n_] := DivisorSigma[0, 10^n + 1]; Array[a, 60, 0] (* Amiram Eldar, Jun 01 2021 *)
  • PARI
    a(n) = numdiv(10^n+1);

Formula

a(n) = A000005(A000533(n)).

A366577 Number of divisors of 3^n+1.

Original entry on oeis.org

2, 3, 4, 6, 4, 6, 8, 6, 8, 24, 12, 12, 8, 6, 16, 48, 4, 24, 16, 12, 8, 72, 16, 6, 64, 24, 16, 96, 16, 24, 48, 12, 4, 96, 16, 24, 16, 24, 16, 192, 32, 12, 128, 6, 32, 768, 16, 24, 16, 24, 128, 384, 16, 12, 32, 96, 64, 192, 16, 12, 128, 12, 32, 4608, 4, 24, 64
Offset: 0

Views

Author

Sean A. Irvine, Oct 13 2023

Keywords

Examples

			a(4)=4 because 3^4+1 has divisors {1, 2, 41, 82}.
		

Crossrefs

Programs

  • Maple
    a:=n->numtheory[tau](3^n+1):
    seq(a(n), n=0..100);
  • Mathematica
    DivisorSigma[0,3^Range[0,100]+1] (* Paolo Xausa, Oct 15 2023 *)
  • PARI
    a(n) = numdiv(3^n+1); \\ Michel Marcus, Oct 14 2023

Formula

a(n) = sigma0(3^n+1) = A000005(A034472(n)).

A366602 Number of divisors of 4^n-1.

Original entry on oeis.org

2, 4, 6, 8, 8, 24, 8, 16, 32, 48, 16, 96, 8, 64, 96, 32, 8, 512, 8, 192, 144, 128, 16, 768, 128, 128, 160, 256, 64, 4608, 8, 128, 384, 128, 512, 8192, 32, 128, 192, 768, 32, 9216, 32, 1024, 4096, 512, 64, 6144, 32, 8192, 1536, 1024, 64, 10240, 3072, 2048, 384
Offset: 1

Views

Author

Sean A. Irvine, Oct 14 2023

Keywords

Examples

			a(4)=8 because 4^4-1 has divisors {1, 3, 5, 15, 17, 51, 85, 255}.
		

Crossrefs

Programs

  • Maple
    a:=n->numtheory[tau](4^n-1):
    seq(a(n), n=1..100);
  • Mathematica
    DivisorSigma[0,4^Range[100]-1] (* Paolo Xausa, Oct 14 2023 *)
  • PARI
    a(n) = numdiv(4^n-1);

Formula

a(n) = sigma0(4^n-1) = A000005(A024036(n)).
a(n) = A046801(2*n) = A046798(n) * A046801(n). - Max Alekseyev, Jan 07 2024

A366688 Number of divisors of 11^n+1.

Original entry on oeis.org

2, 6, 4, 18, 4, 12, 16, 12, 8, 48, 8, 96, 16, 48, 32, 144, 8, 48, 32, 96, 16, 72, 16, 96, 128, 48, 8, 240, 64, 48, 64, 96, 16, 4608, 64, 1152, 128, 24, 16, 1152, 32, 48, 512, 24, 64, 3072, 64, 96, 32, 192, 64, 1152, 8, 96, 512, 6144, 128, 2304, 64, 96, 256, 48
Offset: 0

Views

Author

Sean A. Irvine, Oct 16 2023

Keywords

Examples

			a(4)=4 because 11^4+1 has divisors {1, 2, 7321, 14642}.
		

Crossrefs

Programs

  • Maple
    a:=n->numtheory[tau](11^n+1):
    seq(a(n), n=0..100);
  • Mathematica
    DivisorSigma[0,11^Range[0,70]+1] (* Harvey P. Dale, Mar 17 2025 *)
  • PARI
    a(n) = numdiv(11^n+1);

Formula

a(n) = sigma0(11^n+1) = A000005(A034524(n)).

A366606 Number of divisors of 4^n+1.

Original entry on oeis.org

2, 2, 2, 4, 2, 6, 4, 8, 2, 16, 4, 8, 8, 16, 4, 48, 4, 16, 16, 16, 4, 64, 8, 32, 8, 64, 8, 64, 8, 8, 16, 32, 4, 64, 12, 96, 32, 32, 16, 768, 8, 32, 32, 32, 16, 1536, 4, 16, 8, 64, 64, 512, 4, 16, 64, 96, 32, 256, 8, 128, 64, 64, 16, 1024, 4, 768, 128, 64, 16
Offset: 0

Views

Author

Sean A. Irvine, Oct 14 2023

Keywords

Examples

			a(3)=4 because 4^3+1 has divisors {1, 5, 13, 65}.
		

Crossrefs

Programs

  • Maple
    a:=n->numtheory[tau](4^n+1):
    seq(a(n), n=0..100);
  • Mathematica
    DivisorSigma[0,4^Range[0,100]+1] (* Paolo Xausa, Oct 14 2023 *)
  • PARI
    a(n) = numdiv(4^n+1);
    
  • Python
    from sympy import divisor_count
    def A366606(n): return divisor_count((1<<(n<<1))+1) # Chai Wah Wu, Oct 14 2023

Formula

a(n) = sigma0(4^n+1) = A000005(A052539(n)).
a(n) = A046798(2*n). - Max Alekseyev, Jan 08 2024

A366616 Number of divisors of 5^n+1.

Original entry on oeis.org

2, 4, 4, 12, 4, 8, 8, 16, 8, 32, 16, 32, 8, 16, 8, 96, 8, 16, 32, 32, 16, 576, 16, 16, 16, 32, 24, 320, 8, 16, 128, 32, 16, 384, 64, 128, 64, 32, 16, 192, 32, 64, 64, 64, 8, 512, 8, 32, 32, 128, 128, 768, 32, 32, 64, 128, 128, 384, 8, 64, 64, 64, 16, 24576, 16
Offset: 0

Views

Author

Sean A. Irvine, Oct 14 2023

Keywords

Examples

			a(3)=12 because 5^3+1 has divisors {1, 2, 3, 6, 7, 9, 14, 18, 21, 42, 63, 126}.
		

Crossrefs

Programs

  • Maple
    a:=n->numtheory[tau](5^n+1):
    seq(a(n), n=0..100);
  • Mathematica
    DivisorSigma[0, 5^Range[0, 70] + 1] (* Paolo Xausa, Apr 20 2025 *)
  • PARI
    a(n) = numdiv(5^n+1);

Formula

a(n) = sigma0(5^n+1) = A000005(A034474(n)).
Showing 1-10 of 20 results. Next