cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A295501 a(n) = phi(4^n-1), where phi is Euler's totient function (A000010).

Original entry on oeis.org

2, 8, 36, 128, 600, 1728, 10584, 32768, 139968, 480000, 2640704, 6635520, 44717400, 132765696, 534600000, 2147483648, 11452896600, 26121388032, 183250539864, 473702400000, 2427720325632, 8834232287232, 45914084232320, 109586090557440, 656100000000000
Offset: 1

Views

Author

Seiichi Manyama, Nov 22 2017

Keywords

Crossrefs

phi(k^n-1): A053287 (k=2), A295500 (k=3), this sequence (k=4), A295502 (k=5), A366623 (k=6), A366635 (k=7), A366654 (k=8), A366663 (k=9), A295503 (k=10), A366685 (k=11), A366711 (k=12).

Programs

  • Mathematica
    EulerPhi[4^Range[30] - 1] (* Paolo Xausa, Jun 17 2024 *)
  • PARI
    {a(n) = eulerphi(4^n-1)}

Formula

a(n) = n*A027695(n).
a(n) = A053287(2*n) = A053285(n) * A053287(n). - Max Alekseyev, Jan 07 2024

A069061 Sum of divisors of 2^n+1.

Original entry on oeis.org

4, 6, 13, 18, 48, 84, 176, 258, 800, 1302, 2736, 4356, 10928, 20520, 51792, 65538, 174768, 351120, 699056, 1110276, 3100240, 5048232, 11184816, 17041416, 49012992, 82623888, 211053040, 284225796, 727960800, 1494039792, 2863311536, 4301668356, 12611914848, 20788904016
Offset: 1

Views

Author

Benoit Cloitre, Apr 04 2002

Keywords

Crossrefs

Programs

  • Mathematica
    DivisorSigma[1, 2^Range[50] + 1] (* Paolo Xausa, Jul 05 2024 *)
  • PARI
    a(n) = sigma(2^n+1); \\ Michel Marcus, Nov 24 2013

Formula

a(n) = sigma(2^n+1).
a(n) = A000203(A000051(n)). - Michel Marcus, Nov 24 2013

Extensions

More terms from Amiram Eldar, Oct 04 2019

A366579 a(n) = phi(3^n+1), where phi is Euler's totient function (A000010).

Original entry on oeis.org

1, 2, 4, 12, 40, 120, 288, 1092, 3072, 7776, 23600, 87120, 259200, 797160, 1847104, 5832000, 21523360, 63672480, 152845056, 580921200, 1700870400, 4368821184, 12550120000, 47071589412, 130459631616, 413939700000, 997562438080, 3012122557440, 11159367815680
Offset: 0

Views

Author

Sean A. Irvine, Oct 13 2023

Keywords

Crossrefs

Programs

  • Mathematica
    EulerPhi[3^Range[0,30]+1] (* Paolo Xausa, Oct 15 2023 *)
  • PARI
    {a(n) = eulerphi(3^n+1)}

Formula

a(n) = phi(3^n+1) = A000010(A034472(n)).

A366608 a(n) = phi(4^n+1), where phi is Euler's totient function (A000010).

Original entry on oeis.org

1, 4, 16, 48, 256, 800, 3840, 12544, 65536, 186624, 986880, 3345408, 16515072, 52306176, 252645120, 760320000, 4288266240, 13628740608, 64258375680, 218462552064, 1095233372160, 3105655160832, 16510446886912, 56000724240384, 280012271910912, 869940000000000
Offset: 0

Views

Author

Sean A. Irvine, Oct 14 2023

Keywords

Crossrefs

Programs

  • Mathematica
    EulerPhi[4^Range[0,30]+1] (* Paolo Xausa, Oct 14 2023 *)
  • PARI
    {a(n) = eulerphi(4^n+1)}
    
  • Python
    from sympy import totient
    def A366608(n): return totient((1<<(n<<1))+1) # Chai Wah Wu, Oct 14 2023

Formula

a(n) = A053285(2*n). - Max Alekseyev, Jan 08 2024

A366630 a(n) = phi(6^n+1), where phi is Euler's totient function (A000010).

Original entry on oeis.org

1, 6, 36, 180, 1296, 6000, 41472, 230496, 1580800, 8359200, 58579200, 310968900, 2175102720, 10971642240, 76065091200, 351048600000, 2811459796992, 14508487949472, 88870766837760, 522016066337712, 3564233663616000, 17479898551382400, 128060205344805888
Offset: 0

Views

Author

Sean A. Irvine, Oct 14 2023

Keywords

Crossrefs

Programs

  • Mathematica
    EulerPhi[6^Range[0, 22] + 1] (* Paul F. Marrero Romero, Oct 17 2023 *)
  • PARI
    {a(n) = eulerphi(6^n+1)}

Formula

a(n) = A000010(A062394(n)). - Paul F. Marrero Romero, Oct 17 2023

A366667 a(n) = phi(9^n+1), where phi is Euler's totient function (A000010).

Original entry on oeis.org

1, 4, 40, 288, 3072, 23600, 259200, 1847104, 21523360, 152845056, 1700870400, 12550120000, 130459631616, 997562438080, 11159367815680, 81159501312000, 926510094425920, 6670865700716544, 73205598106368000, 540340585126398016, 5691215305506816000
Offset: 0

Views

Author

Sean A. Irvine, Oct 15 2023

Keywords

Crossrefs

Programs

  • Mathematica
    EulerPhi[9^Range[0, 20] + 1] (* Paul F. Marrero Romero, Nov 04 2023 *)
  • PARI
    {a(n) = eulerphi(9^n+1)}

Formula

a(n) = A000010(A062396(n)). - Paul F. Marrero Romero, Nov 04 2023
a(n) = A366579(2*n). - Max Alekseyev, Jan 08 2024

A366618 a(n) = phi(5^n+1), where phi is Euler's totient function (A000010).

Original entry on oeis.org

1, 2, 12, 36, 312, 1040, 7200, 25088, 183808, 557928, 4396800, 15333120, 121680000, 406812744, 2817007200, 8558784000, 76264519680, 254230063200, 1710194342400, 6349120596480, 47334145996800, 127169887444992, 1088029470747648, 3889097389599864
Offset: 0

Views

Author

Sean A. Irvine, Oct 14 2023

Keywords

Crossrefs

Programs

  • Mathematica
    EulerPhi[5^Range[0,30]+1] (* Harvey P. Dale, Jun 07 2025 *)
  • PARI
    {a(n) = eulerphi(5^n+1)}

A366639 a(n) = phi(7^n+1), where phi is Euler's totient function (A000010).

Original entry on oeis.org

1, 4, 20, 168, 1200, 7600, 43200, 407680, 2712832, 19707408, 112560000, 945677920, 6768230400, 47530457728, 271289229120, 2096760960000, 16569393144832, 116315256993600, 597938524646400, 5699431359135360, 38890647857280000, 270061302781670400
Offset: 0

Views

Author

Sean A. Irvine, Oct 15 2023

Keywords

Crossrefs

Programs

  • Mathematica
    EulerPhi[7^Range[0,21] + 1] (* Paul F. Marrero Romero, Nov 05 2023 *)
  • PARI
    {a(n) = eulerphi(7^n+1)}

Formula

a(n) = A000010(A034491(n)). - Paul F. Marrero Romero, Nov 06 2023

A366658 a(n) = phi(8^n+1), where phi is Euler's totient function (A000010).

Original entry on oeis.org

1, 6, 48, 324, 3840, 19800, 186624, 1365336, 16515072, 84768120, 760320000, 5632621632, 64258375680, 366369658200, 3105655160832, 20140520400000, 280012271910912, 1495522910085120, 12824556668190720, 95907982079387520, 1080582572777472000, 5688765822212629632
Offset: 0

Views

Author

Sean A. Irvine, Oct 15 2023

Keywords

Crossrefs

Programs

  • Mathematica
    EulerPhi[8^Range[0, 21] + 1] (* Paul F. Marrero Romero, Oct 17 2023 *)
  • PARI
    {a(n) = eulerphi(8^n+1)}
    
  • Python
    from sympy import totient
    def A366658(n): return totient((1<<3*n)+1) # Chai Wah Wu, Oct 15 2023

Formula

a(n) = A000010(A062395(n)). - Paul F. Marrero Romero, Nov 06 2023
a(n) = A053285(3*n). - Max Alekseyev, Jan 09 2024

A366669 a(n) = phi(10^n+1), where phi is Euler's totient function (A000010).

Original entry on oeis.org

1, 10, 100, 720, 9792, 90900, 990000, 9090900, 94117632, 681410880, 9897840000, 86925373920, 979102080000, 9080325951840, 95255567232000, 712493107200000, 9926748531589120, 90004044661864320, 989999010000000000, 9090909090909090900, 97910150554895155200
Offset: 0

Views

Author

Sean A. Irvine, Oct 15 2023

Keywords

Crossrefs

Programs

  • Mathematica
    EulerPhi[10^Range[0,20] + 1] (* Paul F. Marrero Romero, Nov 10 2023 *)
  • PARI
    {a(n) = eulerphi(10^n+1)}

Formula

a(n) = A000010(A062397(n)). - Paul F. Marrero Romero, Nov 10 2023
Showing 1-10 of 12 results. Next